
The Astrophysical Journal, 692:887–893, 2009 February 10 doi:10.1088/0004-637X/692/1/887
c© 2009. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

DETECTING THE COSMIC DIPOLE ANISOTROPY IN LARGE-SCALE RADIO SURVEYS

Fronefield Crawford

Department of Physics and Astronomy, Franklin & Marshall College, Lancaster, PA 17064, USA; fcrawfor@fandm.edu
Received 2007 December 6; accepted 2008 October 21; published 2009 February 20

ABSTRACT

The detection of a dipole anisotropy in the sky distribution of sources in large-scale radio surveys can be used to
constrain the magnitude and direction of our local motion with respect to an isotropically distributed extragalactic
radio source population. Such a population is predicted to be present at cosmological redshifts in an isotropically
expanding universe. The extragalactic radio source population is observed to have a median redshift of z ∼ 1, a
much later epoch than the cosmic microwave background (z ∼ 1100). I consider the detectability of a velocity
dipole anisotropy in radio surveys having a finite number of source counts. The statistical significance of a velocity
dipole detection from radio source counts is also discussed in detail. I find that existing large-scale radio survey
catalogs do not have a sufficient number of sources to detect the expected velocity dipole with statistical significance,
even if survey masking and flux calibration complications can be completely eliminated (i.e., if both the surveys
and observing instruments are perfect). However, a dipole anisotropy should be easily detectable in future radio
surveys planned with next-generation radio facilities, such as the Low Frequency Array and the Square Kilometer
Array; tight constraints on the dipole magnitude and direction should be possible if flux calibration problems can
be sufficiently minimized or corrected and contamination from local sources can be eliminated.
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1. INTRODUCTION AND MOTIVATION

The measurement of a dipole anisotropy in large-scale sur-
veys can be used to probe the distribution of matter at differ-
ent distances and constrain our local motion with respect to
large-scale mass distributions in the universe. There have been
a number of attempts to measure the dipole anisotropy in dif-
ferent surveys. The dipole anisotropy in the cosmic microwave
background (CMB) at redshift z ∼ 1100, probed by the Cosmic
Background Explorer (Smoot et al. 1992), and more recently by
the Wilkinson Microwave Anisotropy Probe (WMAP; Bennett
et al. 2003), was clearly detected, and tight constraints on our
local motion with respect to this background were made with
these measurements. Analysis of the X-ray background at in-
termediate redshifts (z � 4; Boughn et al. 2002) and the matter
distribution at local distances (the Local Group), probed at in-
frared (IR) wavelengths using data from the Infrared Astronom-
ical Satellite (IRAS; Webster et al. 1997), has resulted in dipole
detections as well. A marginal detection was also reported by
Blake & Wall (2002) using radio data from the National Radio
Astronomy Observatory (NRAO) Very Large Array (VLA) Sky
Survey (NVSS; Condon et al. 1998). In Section 4.2, I discuss
this radio survey specifically in the context of a dipole mea-
surement. Baleisis et al. (1998) referred to a large number of
previous dipole investigations using IR galaxy catalogs (e.g.,
Meiksin & Davis 1986; Yahil et al. 1986; Villumsen & Strauss
1987; Harmon et al. 1987), optical catalogs (e.g., Lahav 1987;
Lahav et al. 1988; Plionis 1988), IRAS redshift surveys (e.g.,
Rowan-Robinson et al. 1990; Strauss et al. 1992; Webster et al.
1997), and optical redshifts (Lynden-Bell et al. 1989; Hudson
1993). More details about inhomogeneities on large scales in
different kinds of surveys can be found in Lahav (2000), where
an extensive discussion is presented.

An isotropically distributed population of radio sources is
predicted to exist at cosmological redshifts in an isotropically
expanding universe. The extragalactic radio source population
is observed to have a median redshift of z ∼ 1 (e.g., Loan
et al. 1997), a much later epoch than the CMB. Assuming

that the radio source distribution is intrinsically isotropic, our
local motion with respect to the rest frame of this population
would produce a dipole anisotropy in the sky distribution of
radio sources. Large-scale radio survey catalogs covering a
large fraction of the sky can in principle be used to detect this
dipole anisotropy and subsequently constrain the magnitude and
direction of our local motion with respect to this frame.

In this paper, I first describe the dipole anisotropy in the sky
distribution of radio sources that would be introduced by our
motion with respect to an isotropic radio source population.
I then describe the corresponding dipole signal that would be
seen in the distribution of discrete radio survey source counts. I
describe a method to detect this signal in radio survey catalogs,
with particular attention to the statistical significance of a
possible detection. Finally, I consider both existing and proposed
future radio surveys and whether a velocity dipole signal would
be detectable with statistical confidence using this method given
the number of discrete source counts present in these surveys. In
this analysis, I consider only the most optimistic case in which
there are no survey calibration problems, complications from the
masking of certain survey regions, or uneven survey coverage.

2. THE EFFECT OF MOTION ON THE OBSERVED RADIO
SOURCE DISTRIBUTION

Motion with respect to the rest frame of an isotropic distri-
bution of radio sources introduces two effects that change the
observed source number density on the sky as a function of
the sky position (Ellis & Baldwin 1984; Condon 1988). The
first effect is a boosting of the flux from sources located toward
the direction of motion. This depends on the observer speed
and the source spectral index. This Doppler effect changes the
number of detectable sources above a given flux threshold in a
radio survey. The second effect, relativistic beaming, changes
the apparent solid angle on the celestial sphere as seen by the
moving observer. This in turn alters the observed source number
density as a function of the sky position. For N radio sources
that are isotropically distributed across the full 4π sr of sky, the
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source number density is σ0 = N/4π , a constant. The density
variation from the observer’s motion will depend on the angle
θ measured from the direction of motion (defined as θ = 0)
so that σ (θ ) = dN/dΩ. Azimuthal symmetry in the situation
removes any dependence on the second angle φ.

By combining the two effects described above, an expression
for the source number density of radio sources seen by the
moving observer has been presented by Ellis & Baldwin (1984).
For small observer speeds (β ≡ v/c � 1) in which only first-
order terms in β are retained, the source number density as a
function of θ is shown to be

σ (θ ) = {1 + [2 + (γ − 1)(1 + α)]β cos θ}σ0, (1)

which is a dipole anisotropy. In this expression, γ is the power-
law index for the number of extragalactic radio sources per flux
interval (dN/dS ∼ S−γ ) and α is the mean radio spectral index
of the source population (defined here according to S ∼ ν−α).
Following this, we can write

σ (θ ) = (1 + A cos θ )σ0, (2)

where the amplitude A = [2 + (γ −1)(1 +α)]β. This expression
(with some variation in nomenclature convention) has been used
in the analysis of radio source counts by other authors (e.g.,
Condon 1988; Baleisis et al. 1998; Blake & Wall 2002). The
mean values of the radio spectral index and power-law index
for the extragalactic radio source population are estimated to be
α ∼ 0.75, and γ ∼ 2, respectively (e.g., Blake & Wall 2002),
and I use these values in the analysis throughout the rest of the
paper.

3. DETECTING THE DIPOLE ANISOTROPY IN RADIO
SURVEY CATALOGS

In this section, I describe a method for detecting the dipole
anisotropy in radio survey catalogs, and I calculate the minimum
number of discrete catalog sources required to detect the
anisotropy with statistical significance. For the calculation, I
assume complete sky coverage (4π sr) in which the survey has
no masked, incomplete, or invalid regions. Perfect survey flux
calibration is also assumed. These conditions, of course, do not
apply in real surveys, and I briefly address (but do not solve) the
complications posed by the presence of these effects, which can
be quite significant. Since survey masking and flux thresholds
will reduce the number of usable source counts in a survey,
I do consider the effect that this reduction has on the dipole
detectability in two of the surveys that I discuss.

3.1. A Method for Detecting the Dipole Anisotropy

A dipole vector �D can be measured for a distribution of
discrete sources by computing an evenly weighted sum over
all N source counts, where each source contributes a three-
dimensional unit vector r̂ to the sum (e.g., Baleisis et al. 1998).1

The direction of r̂ is determined by the position of the source
on the sky as seen by the observer at the center of the celestial

1 There is abundant previous literature on the use of directional statistics and
spherical data and coordinates (like those employed here) as applied across a
number of scientific disciplines. Extensive discussions can be found in books
by Batschelet (1981), Fisher et al. (1993), and Mardia & Jupp (1999) in which
applications of directional statistics in a diverse range of subjects (e.g.,
biology, meteorology, psychology, earth sciences) are presented.

sphere. Then, the sum is

�D =
N∑

i=1

r̂i . (3)

In the case of an ideal survey with perfect flux calibration,
complete sky coverage, and in the limit of large N, all compo-
nents of the vector sum would cancel except for a component
along the direction of motion (θ = 0), corresponding to the
ẑ-axis.

In this case, the sum can be written as the integral of the
number density over the celestial sphere:

�D = ẑ

∫ φ=2π

φ=0

∫ θ=π

θ=0
σ (θ ) cos θ sin θdθdφ. (4)

The additional cos θ term is present here since we are only
concerned with the ẑ-component of the integral. Replacing σ (θ )
in the expression with Equation (2) gives

�D = ẑ

∫ φ=2π

φ=0
dφ

∫ θ=π

θ=0
σ0(1 + A cos θ ) cos θ sin θdθ, (5)

which, when evaluated, gives

�D = 4π

3
Aσ0ẑ. (6)

Using σ0 = N/4π and A = [2 + (γ − 1)(1 + α)]β, the
magnitude of the measured dipole can be written as

| �D| = D = 1
3 [2 + (γ − 1)(1 + α)]βN. (7)

This is the dipole amplitude D one would measure for an
ideal survey of N radio sources with complete sky coverage if
the observer were moving with speed v = βc (and v � c).

3.2. The Statistical Significance of a Dipole Detection

For a finite number of source counts N, there will be an
uncertainty in the measured dipole �D arising from shot noise,
and this uncertainty determines the significance with which �D
can be measured. We can imagine the uncertainty as being
represented by a three-dimensional spherical probability cloud
in direction space, which represents possible measured values
of �D. This cloud will have some characteristic radial size, and
it will be centered on the tip of the actual measured dipole
�D. The cloud is spherical since there is an equal probability

of the deviation occurring in any three-dimensional direction.
This probability cloud can be used to estimate the uncertainty
in the measured speed of the observer β, and exclude the zero-
motion case (β = 0) at some confidence level (if an intrinsically
isotropic distribution of radio sources is assumed). The direction
of motion can also be determined, with statistical uncertainties,
by considering the direction of �D and the angular size that
the probability cloud subtends as seen from the origin (by
the observer). For the test of whether the zero-motion case is
excluded with statistical significance, it is functionally more
useful to recenter the probability cloud at the origin instead of
centering it at the tip of �D. This is done for the discussion below.

The characteristic size ρ of the probability cloud is deter-
mined by a random walk of N steps in three dimensions (corre-
sponding to the N sources in the vector sum that produces �D). If
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the magnitude of each step is 1 unit (corresponding to the size of
the unit vector), then we must consider the average magnitude
of these steps as projected onto an axis. The actual step sizes
along this axis will range from −1 to +1 with a probability
weighting that is determined by the solid angle area from which
the given projected value comes. The average projected step size
s on the axis is computed from this to be s = 1/

√
3.

For large N, the probability distribution of the magnitude of
the final radial displacement is determined by the three one-
dimensional Gaussian distributions in Cartesian coordinates,
which represent the three directional degrees of freedom (dofs).
The probability p(r) that the displacement occurs at a radial
distance r from the starting point (the origin) is

p(r) = 1

ρ3(2π )3/2
4πr2 exp(−r2/2ρ2). (8)

This is obtained by multiplying the three one-dimensional
Gaussian probability distributions and including an additional
weighting factor 4πr2 to account for the increasing spherical
volume element as r increases.

The characteristic size ρ is determined by the random walk
according to

ρ = s
√

N =
√

N

3
. (9)

Using this, the probability p(r) can be rewritten in terms of
N as2

p(r) =
(

54

πN3

)1/2

r2 exp(−3r2/2N ). (10)

Figure 1 shows the probability distribution p(r) from
Equation (10) plotted against a histogram of the magnitude of the
displacement vectors D that were calculated from 105 simulated
surveys. Each simulated survey had a random isotropic distribu-
tion of 2.7×104 sources (which is the number of sources selected
for the analysis and discussion of the combined 87 Green Bank
(87GB)/Parkes–MIT–NRAO (PMN) survey below; see also
Table 1). One of the simulated surveys is shown in Figure 2 and
is discussed in more detail below. The histogram in Figure 1
was produced from the set of displacement vectors shown in
Figure 3 (this is discussed below), and it has been normalized
in Figure 1 to have a total area equal to 1 for comparison with
the probability curve. The match between the curve and the his-
togram supports the use of this probability distribution in the
subsequent calculations and analysis.

We can use Equation (10) to estimate the likelihood of
randomly measuring a dipole with a magnitude greater than
or equal to D in the zero-motion, isotropic case. We integrate
the probability function p(r) from r = D to an upper limit of
r = N (which is the maximum possible dipole value; in the limit
of large N, the value of this upper limit approaches infinity).
The integration is purely radial since the angular dependence
drops out for the spherical cloud. The result of the integration,
p(r > D), which ranges between 0 and 1, is the probability-
weighted volume outside of the radius D. This represents the
likelihood of randomly measuring a dipole of magnitude D or
greater from an isotropic source distribution. Conversely, we can
use the measured dipole magnitude D to exclude the zero-motion
case (β = 0) at a confidence level determined by 1 − p(r > D)

2 This result is not new, and the same expression can be differently derived
by computing the χ2 probability distribution with three dofs, χ2

3 (3r2/N ).
Introducing a change in variables with a Jacobian and employing a substitution
eventually lead to a result that is identical to Equation (10).

Figure 1. Histogram of the magnitude of the displacement vectors D calculated
from 105 survey simulations, each of which had 2.7 × 104 sources isotropically
distributed across the sky (see also Figure 3, from which this histogram was
produced). Also plotted is the probability distribution p(r) from Equation (10)
as a function of radial displacement r, with N = 2.7×104 used in the probability
expression. The histogram has been normalized in the plot to have a total area
equal to 1 for comparison with p(r). The match between the curve and the
histogram supports the use of this probability distribution in our analysis.

(e.g., if 1 − p = 68%, then the zero-motion case would be
excluded at the 1σ level).

We can also determine an uncertainty in the magnitude of the
measured dipole D using similar reasoning. We surround the
measured vector �D with the spherical probability cloud centered
at its tip. We pick the confidence level of interest (1σ , 2σ , etc.;
let us call it nσ ) from the corresponding percentage level of
exclusion. Using this, we solve for the corresponding radial
distance rn in the probability cloud for which the probability-
weighted volume within rn is the aforementioned percentage
of the total probability-weighted volume. This is done by
evaluating the integral for p(r) using a lower limit (rn) that
will give the appropriate percentage level of exclusion. Once
rn has been determined in this way, this defines an nσ error
sphere centered on the tip of �D. Since the uncertainty cloud is
spherical, the projection of the cloud onto the D̂ axis gives the
magnitude rn, which is the nσ uncertainty in D. The measured
dipole magnitude is then D ± rn (at the nσ confidence level).
Figure 4 shows detection confidence levels of dipole detections
for calculations of D and rn from several idealized surveys with
different numbers of source counts N and different assumed
values for the dipole velocity β.

This error sphere can also be used to determine an uncertainty
in the direction of �D. The projection of the error sphere onto
the celestial sphere as seen by the observer at the center defines
a circularly symmetric region on the sky centered on the dipole
direction D̂. Sky directions lying outside the circular region are
statistically excluded at the nσ level. Let the dipole direction D̂
correspond to θ = 0 again, and let the nσ angular uncertainty
in the dipole direction be δθn (this is the angular radius of
the projected circular region). δθn is determined by the angle
between D̂ and a vector that starts at the origin and is tangent to
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Figure 2. Aitoff projection plot in equatorial coordinates of 2.7 × 104 simulated radio sources distributed isotropically across the unmasked regions of the sky. The
masked regions shown here are very close to those used by Loan et al. (1997) and Baleisis et al. (1998) in their analysis of the combined 87GB/PMN survey (see also
the discussion of these surveys in the text and Table 1). The 2.7 × 104 sources in this simulated survey correspond to the number of sources in the 87GB/PMN survey
in the unmasked regions, which have flux densities between 50 and 100 mJy. See Figure 1 of Baleisis et al. (1998) for a qualitative comparison of this simulated source
distribution with the actual source distribution.

Figure 3. Two-dimensional projection plot of the set of displacement vectors
�D in three dimensions that were produced from 105 simulations of isotropic

surveys, each of which had 2.7×104 sources. One of these simulated surveys is
shown in Figure 2. The distribution shown here was produced after the mean of
the distribution was subtracted from each displacement vector to correct for the
vector offset introduced from survey masking effects. This three-dimensional
distribution was used to produce the histogram of radial displacements shown
in Figure 1.

the error sphere of radius rn. This is calculated by

δθn = arcsin(rn/D), (11)

for rn < D. No statistically significant direction constraint can
be made for the case rn � D. This uncertainty angle δθn is
determined by the number of sources N in the survey and the
measured value of D (which in turn depends on N and the
observer’s velocity β). Figure 5 shows calculations of δθn for
an assumed dipole velocity of 370 km s−1 as a function of the
number of survey source counts N.

Figure 4. Dipole detection confidence level vs. dipole velocity for several
existing and proposed future large-scale radio surveys. The solid curves
represent the various surveys with different numbers of sources and are labeled
(see the text and Table 1 for survey descriptions). In this plot, each survey
is assumed to have perfect flux calibration and no contamination from local
sources, corresponding to the most optimistic detection case possible. The
expected dipole velocity of 370 km s−1 is indicated by the dashed vertical
line. For this velocity, a minimum of 2.0 × 106, 3.1 × 106, and 4.5 × 106 survey
sources would be required for 3σ , 4σ , and 5σ dipole detections, respectively.

3.3. Incomplete Survey Sky Coverage and Imperfect Flux
Calibration

For real radio surveys that do not have complete sky coverage,
an artificial dipole would be measured when the sum of the unit
vectors r̂ is taken over the N observed sources. This dipole will
be biased toward directions that have more complete survey
coverage. To deal with this incompleteness when analyzing real
radio survey data, one usually defines a mask of survey regions
on the celestial sphere to exclude in the analysis. The vector sum
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Figure 5. Uncertainty in the measured dipole direction (δθ ) vs. number of
survey source counts (N) for several existing and proposed future large-scale
radio surveys (see the text and Table 1). In this plot, a dipole velocity of
370 km s−1 is assumed as is perfect flux calibration and no contamination from
local sources (corresponding to the most optimistic detection case possible).
The dotted vertical lines represent the various surveys with different numbers
of sources and are labeled. From left to right, the solid curves represent 1σ , 3σ ,
5σ , and 8σ constraints on the dipole direction uncertainty that are possible with
this detection method.

Table 1
Existing and Proposed Future Large-Scale Radio Surveys

Radio Survey Observing Frequency Flux Density Limit N
(GHz) (mJy)

87GB/PMN selecta 4.85 50 2.7 × 104

NVSS selectb 1.4 15 3.1 × 105

NVSS allc 1.4 3.5 1.8 × 106

LOFARd 0.15f 0.7 3.5 × 108

SKAe 1.4f 10−4 ∼ 1010

Notes. “Select” refers to a selected sample of sources from the survey deemed
appropriate for the analysis.
a Includes only sources with a flux density between 50 and 100 mJy from the
combined 87GB and PMN surveys. Several regions, including regions within
10◦ of the Galactic plane, were also excluded (Loan et al. 1997; Baleisis et al.
1998).
b Includes only sources with a flux density of above 15 mJy from the NVSS.
Several regions, including regions within 15◦ of the Galactic plane, were also
excluded (Blake & Wall 2002).
c Includes all sources in the NVSS with a flux density of above 3.5 mJy.
d Includes all sources in a possible LOFAR survey outlined by Jackson.
e Includes all sources in a possible SKA survey.
f Possible observing frequency.

is then taken over the distribution of sources in the unmasked,
valid regions to obtain a measured dipole �D. The center of the
uncertainty probability cloud (described above) will be offset
from the origin (corresponding to a magnitude and direction) by
an amount determined by the geometry of the unmasked region.
In principle, one can simply subtract this offset vector from all
other vectors in the analysis (such as the measured �D) so that
everything (including the distribution of points in the probability
cloud) is recentered to the origin. One would then proceed with
the analysis as described above.

However, even without any problems introduced by the flux
calibration, the shapes of the regions to be masked in a real
survey are generally complicated. For example, sources in the
Galactic plane and in certain declination bands may not be
appropriate to include in the analysis (e.g., see the data masking
used in the analysis of radio surveys by Loan et al. 1997, Baleisis
et al. 1998, and Blake & Wall 2002; see also Figure 2). Also,
the finite number of sources introduces a shot noise uncertainty
in the offset vector. In the absence of calibration issues, the
most straightforward course of action would be to simulate the
survey by randomly assigning positions to N sources drawn
from an isotropic distribution within the unmasked region of
the sky and compute the sum of source unit vectors for many
of these simulations. Figure 2 shows an Aitoff projection in
equatorial coordinates of a single simulated survey of 2.7 × 104

sources distributed isotropically over the unmasked regions
of the sky (see Figure 1 of Baleisis et al. 1998 and their
masked regions, which were used as a guide here). The set
of resulting vector displacements from the survey simulations
will produce a probability cloud in which the mean position
defines the vector to be subtracted. Figure 3 shows the vector
displacements produced from 105 simulated isotropic surveys
like that shown in Figure 2. In this plot, the mean vector has
already been subtracted so that the cloud is centered at the origin,
and the resulting displacements �D have been projected onto a
two-dimensional plane. This distribution of displacements in
Figure 3 is the probability cloud that was used to produce the
histogram shown in Figure 1.

Source clustering at local distances can also affect the analysis
of radio surveys (e.g., the NVSS Survey; see discussions by
Boughn & Crittenden 2002; Blake & Wall 2002, and also
below). In this paper, I make the assumption that the intrinsic
distribution of sources is homogeneous and that there is no
significant clustering on large scales beyond the local mass
distribution. I assume that local sources would be excised prior
to analysis.

Also, real radio surveys do not have perfect flux calibration,
and this can bias the source count distribution in certain sky
regions, thereby producing an artificial dipole anisotropy. The
effects of survey calibration errors in combination with the
masking of survey regions can be quite severe, and dealing
with these complex effects has been much discussed in the
literature (e.g., Hivon et al. 2002 for the analysis of the CMB;
Hamilton & Tegmark 2004 and Swanson et al. 2008 for large-
scale galaxy catalogs, such as the Sloan Digital Sky Survey
(SDSS; York et al. 2000). In the analysis presented here, I
ignore all such calibration effects and consider only the raw
source counts N and whether a dipole would be detectable
in the idealized case where the surveys and instruments are
perfect.

4. PROSPECTS FOR A DIPOLE DETECTION IN
EXISTING AND PROPOSED FUTURE RADIO SURVEYS

Large-scale radio surveys currently exist in which the method
outlined here for detecting the velocity dipole can be applied.
However, the statistical significance of such a detection depends
on whether these surveys have a sufficient number of sources,
even if the flux calibration were perfect. Next-generation radio
instruments that are in various stages of planning and devel-
opment will also be used to conduct large-scale radio surveys
in the future. Below I consider existing and possible future ra-
dio surveys in the order of increasing number of source counts,
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and I discuss the possibility of detecting the dipole in each of
the surveys in turn, assuming the most optimistic scenario (i.e.,
perfect flux calibration).

4.1. The 87 Green Bank and Parkes–MIT–NRAO Surveys

The 87GB (Gregory & Condon 1991) and PMN surveys
(Griffith et al. 1994; Wright et al. 1994, 1996) were conducted
at 4.85 GHz and covered the northern and southern celestial
sky, respectively. Baleisis et al. (1998) and Loan et al. (1997)
gave concise descriptions and summaries of these surveys in
the context of a large-scale structure and the velocity dipole
effect, and they referred to a number of previous attempts to
detect the velocity dipole (see also the references in Section 1).
Baleisis et al. (1998) have conducted an analysis of whether the
87GB and PMN surveys could be used for detecting the dipole
using a method similar to that described here (in their case, they
considered the measured dipole magnitude relative to the shot
noise term but did not do a more extensive analysis of possible
detection significance).

In their analysis, Baleisis et al. (1998) excised certain in-
complete or unreliable survey regions identified by Loan et al.
(1997), including sky regions within 10◦ of the Galactic plane,
to eliminate Galactic sources, and they imposed a minimum
flux density cutoff of 50 mJy for sources to be considered. This
latter selection reduced declination-dependent number density
variations. After performing a similar excision (but retaining
only sources between 50 and 100 mJy), I find that the selected
sample consists of ∼ 2.7 × 104 sources covering ∼ 70% of the
celestial sphere (see Table 1). Figure 2 shows similar masking
used in a simulated survey of 2.7 × 104 isotropically distributed
sources. As was also found by Baleisis et al. (1998), I find
that this is not an adequate number of source counts for a sta-
tistically significant dipole detection given the expected local
velocity of v ∼ 370 km s−1, even if these surveys had perfect
flux calibration. As seen in Figure 4, an observer velocity that
is an order of magnitude greater than this would be required
for even a 3σ detection. Figure 5 shows that for the expected
velocity, no direction constraint could be made with this sample
at any significance level. The shot noise analysis conducted by
Baleisis et al. (1998) showed that at least ∼ 4 × 105 galaxies
over the sky would be needed to detect the velocity dipole at
the same level as the shot noise (i.e., a 1σ detection). Our re-
sults are consistent with theirs and suggest that a comparable
number of sources would be needed for a 1σ detection (see
Figure 4 and Table 1, particularly the NVSS select survey that
has ∼3.1 × 105 sources). This result does not account for the
dipole introduced from large-scale structure, which further com-
plicates the analysis. Thus, the 87GB and PMN surveys are not
adequate for detecting a velocity dipole anisotropy using this
method, regardless of whether slightly different flux density
selection criteria are used in the data selection.

4.2. The NRAO VLA Sky Survey

The NVSS is a large-scale radio survey that was conducted
with the VLA at 1.4 GHz (Condon et al. 1998). The total
number of sources in the NVSS is ∼ 1.8 × 106, and the survey
is estimated to be 99% complete down to an integrated flux
density of 3.5 mJy. The survey covers 82% of the celestial
sphere, corresponding to a declination range of δ > −40◦, and
the majority of the sources in the survey are believed to be at
cosmological distances.

Blake & Wall (2002) have searched the NVSS for a dipole
anisotropy, and we follow their work to determine which

survey regions and flux ranges could be considered reliable
for the dipole search described here. Regions within 15◦ of
the Galactic plane were masked by Blake & Wall (2002) to
eliminate Galactic sources in their dipole analysis. They also
eliminated the “clustering dipole” (from the Local Supercluster),
which has its own dipole component, thereby ensuring that
only cosmological sources were used in the analysis. This
was done by eliminating radio sources within 30′′ of nearby
galaxies known from several catalogs. Although the claimed
99% completeness level of the NVSS is 3.5 mJy (Condon et al.
1998), there are significant declination effects evident at this flux
level in which the number density fluctuates by a few percent
from the mean. Blake & Wall (2002) used a minimum flux cutoff
of 15 mJy for their analysis (see their Table 1), which reduces
the variations to less than 1%. However, as described above,
these flux variations in combination with survey masking may
still introduce complications that can significantly contaminate
a dipole search.

After eliminating unreliable survey regions, Blake & Wall
(2002) retained a selected sample of ∼ 3.1 × 105 sources above
15 mJy, representing ∼ 20% of the initial sample (see Table 1).
This is not adequate for a statistically significant dipole detection
with the method presented here, even if flux calibration were
perfect in the survey. For an expected dipole velocity of 370
km s−1, the best possible dipole detection would be slightly
less than 1σ (Figure 4). The dipole direction would also be
unconstrained (Figure 5). Given these issues, I conclude that the
NVSS cannot be used for detecting the velocity dipole using
this method. Including all of the sources in the entire NVSS
catalog (N ∼ 1.8 × 106) would yield a marginal detection and
constraint at best (∼ 3σ ), but flux calibration problems with the
weakest sources in the survey prevent this from being feasible.

4.3. Next-Generation Surveys with the Low Frequency Array
and the Square Kilometer Array

Future large-scale radio surveys will be conducted with
next-generation radio telescope facilities that are currently in
various stages of planning and development. Among these new
instruments are the Long Wavelength Array3 (LWA; e.g., Taylor
2006), the Murchison Widefield Array4 (MWA; e.g., Morales
et al. 2006), and the Low Frequency Array (LOFAR)5, all of
which will observe the sky at low radio frequencies (a few
hundred MHz or less). Farther into the future, an even more
advanced radio facility, the Square Kilometer Array (SKA),6

is being considered for development. Although the details of
the surveys to be conducted with these instruments are not yet
firmly established, I focus on two possible surveys that have
been outlined for two of these instruments: LOFAR and the
SKA.

LOFAR is an advanced radio telescope array that is expected
to operate at low radio frequencies (30–240 MHz) and will
have thousands of antenna elements distributed over hundreds of
kilometers (e.g., Stappers et al. 2007; Falcke et al. 2007; Fender
et al. 2008). A survey using LOFAR to search for gravitational
lenses has been outlined by Jackson.7 In a possible LOFAR
survey, half of the celestial sky (2π sr) would be covered down to
a limiting sensitivity of ∼ 0.7 mJy at 151 MHz. The total number

3 http://lwa.unm.edu
4 http://www.haystack.mit.edu/mwa
5 http://www.lofar.org
6 http://www.skatelescope.org
7 N. Jackson (2002), LOFAR Memorandum Series #4.

http://lwa.unm.edu
http://www.haystack.mit.edu/mwa
http://www.lofar.org
http://www.skatelescope.org
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of sources expected to be detected in such a survey would be
∼ 3.5 × 108 (Table 1). Other recent estimates of source counts
from proposed LOFAR surveys at a variety of wavelengths
suggest a range of ∼ 107 to ∼ 109 detectable sources in 2π
sr of sky (see, e.g., the presentation by Rottgering 2007). For
the sake of simplicity, we use the survey parameters outlined
by Jackson for our analysis in which the expected number of
source counts falls near the middle of this range.

The SKA is a planned next-generation radio telescope facility,
which will have vastly increased sensitivity for large-scale radio
surveys. Simulations of a large-scale 1.4 GHz radio survey with
the SKA suggest a limiting flux density of ∼ 0.1 μJy and a yield
of ∼ 109 or more sources per sr (Hopkins et al. 1999, 2000).
This corresponds to ∼ 1010 sources for the entire celestial sphere
(Table 1).

Even with large gaps in sky coverage, the sheer number of
sources in a survey conducted with either LOFAR or the SKA
would far exceed the requirements for a statistically significant
dipole detection with this method. If flux calibration problems
can be sufficiently minimized or properly corrected, and if local
source contamination can be removed, it should be easy to detect
the dipole with large statistical significance if the dipole velocity
is near the expected value of v ∼ 370 km s−1 (see Figure 4).
The constraint on the dipole direction should also be very precise
(Figure 5), easily constrained to within a few degrees or less in
both cases.

5. CONCLUSIONS

I have described a method for detecting a velocity dipole
anisotropy in large-scale radio surveys and considered the
feasibility of detecting this dipole with statistical significance in
existing and proposed future large-scale surveys. This analysis
does not account in any way for the severe complications
that arise from imperfect flux calibration and masking effects
in surveys, and therefore corresponds to the most optimistic
detection case possible. Neither the combined 87GB/PMN
survey nor the NVSS has a sufficient number of sources to
detect the velocity dipole anisotropy with statistical significance
using this method, even if no calibration or sample bias effects
were present. However, proposed large-scale radio surveys using
next-generation radio science instruments (e.g., LOFAR and
the SKA) are more promising: surveys with these instruments
should easily have enough source counts for a statistically
significant dipole detection and direction constraint if flux
calibration problems and contamination from local sources can
be sufficiently reduced or eliminated.

I thank E. Praton for assistance with some of the derivations,
N. Keim for contributions to the simulation work, and S. Boughn
and the referee J. Ralston for helpful comments and insights,
which have improved this work.
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