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Pulsar timing arrays (PTAs) use an array of millisecond pulsars to search for gravitational waves in
the nanohertz regime in pulse time of arrival data. This paper presents rigorous tests of PTA methods,
examining their consistency across the relevant parameter space. We discuss updates to the 15-year
isotropic gravitational-wave background analyses and their corresponding code representations. Descrip-
tions of the internal structure of the flagship algorithms Enterprise and PTMCMCSampler are given to facilitate
understanding of the PTA likelihood structure, how models are built, and what methods are currently
used in sampling the high-dimensional PTA parameter space. We introduce a novel version of the PTA
likelihood that uses a two-step marginalization procedure that performs much faster in gravitational wave
searches, reducing the required resources facilitating the computation of Bayes factors via thermodynamic
integration and sampling a large number of realizations for computing Bayesian false-alarm probabilities.
We perform stringent tests of consistency and correctness of the Bayesian and frequentist analysis methods.
For the Bayesian analysis, we test prior recovery, simulation recovery, and Bayes factors. For the
frequentist analysis, we test that the optimal statistic, when modified to account for a non-negligible
gravitational-wave background, accurately recovers the amplitude of the background. We also summarize
recent advances and tests performed on the optimal statistic in the literature from both gravitational wave
background detection and parameter estimation perspectives. The tests presented here validate current
analyses of PTA data.

DOI: 10.1103/PhysRevD.109.103012

I. INTRODUCTION

Since the first detection of gravitational waves (GWs)
from a stellar mass black hole binary in 2015 [1], the field
of GW astronomy has flourished with dozens more
detections of transient signals [2]. Besides these signals
at Oð100Þ Hz frequencies, detected via ground-based laser
interferometry, other methods can detect GWs across a
wide range of frequencies. Pulsar timing arrays (PTAs)
create a galactic-scale GW detector using radio telescopes
to collect pulse times of arrival (TOAs) from an array of
millisecond pulsars. These pulsars exhibit exceptional
long-timescale arrival-time stability, allowing PTAs to
use them as galactic scale clocks that are sensitive to
perturbations at frequencies 1–100 nHz. The expected
target signal is the stochastic GW background (GWB),
possibly from an ensemble of merging supermassive black-
hole binaries that could result from galactic mergers [3].
Previously, the European Pulsar Timing Array [4], the

Parkes Pulsar Timing Array in Australia [5], and the North
American Nanohertz Observatory for Gravitational waves
(NANOGrav) [6,7] all reported detection of a red-noise
process with common spectrum among pulsars, but no
evidence either way for inter-pulsar correlations [8–10].
Such a process is known as CURN, for common-spectrum
uncorrelated red noise. The International Pulsar Timing

Array (IPTA) [11] consists of these collaborations along
with the Indian Pulsar Timing Array [12] and the MeerKAT
Pulsar Timing Array [13]. Combining data from older
datasets from NANOGrav, the European Pulsar Timing
Array, and the Parkes Pulsar Timing Array in Australia, the
IPTA also found a consistent CURN in their second data
release [14]. Such a signal might arise from some currently
unknown noise processes shared by the measured pulsars
[10,15,16]. Thus, to claim a detection of GWs we require
evidence of the telltale correlations between pulsar pairs,
known as Hellings and Downs (HD) correlations [17].
Among the 67 pulsars used in the GWB analysis in the

15-year data [18], NANOGrav reports a stronger detection
of the CURN process. Additionally, NANOGrav reports
evidence for HD correlations suggesting that the common
signal seen by the three PTAs is indeed a gravitational-
wave background [19]. While the parameter estimation
and subsequent astrophysical interpretation remains some-
what dependent on noise models (see, e.g., [20] for more
information about the noise models used), the GWB
remains consistent with an origin of an ensemble of
supermassive black hole binaries [21]. In addition to
searching for a GWB, other analyses have been performed
looking for single continuous-wave sources [22],
anisotropy in the GWB [23], and possible hints of new
physics [24]. Future joint analyses in the IPTA will work
toward combining data to improve sensitivity to GW
sources and their corresponding parameters for astrophysi-
cal interpretation.

*Deceased.
†Infinia ML, 202 Rigsbee Avenue, Durham, North Carolina

27701, USA.
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In performing analyses for HD correlations, PTA col-
laborations employ a variety of techniques to process
and analyze their data. NANOGrav uses a modular pipeline
that starts with radio telescope data and ends with astro-
physical GWB inference. Radio telescope data are proc-
essed into TOAs, analyzed for outliers, and fitted with a
timing model [18]. Subtracting the predicted TOAs from
the observed TOAs results in the TOA residuals. These
residuals are broken down into terms associated with
deterministic signals, as one might expect from an indi-
vidual binary, as well as stochastic signals such as those
from a GWB. Stochastic signals may be further broken into
different types of noise processes: white and red. White
noise has a flat power spectral density and is associated
with noise in telescope observations. Red noise has a larger
amplitude at lower frequencies and originates from pulsars
themselves in the form of spin noise [25], fluctuations in
the dispersion measure caused by the interstellar medium
in between us and the pulsar, and a potential GWB [26].
A single-pulsar white and red noise analysis is performed
at the end of this part in the pipeline. The TOAs, timing
model, residuals, and noise analyses comprise the initial
input for any GW analysis.
Unlike other regimes of GW data analysis, most current

PTA gravitational-wave analyses are performed in the time
domain [27,28]. In this paper, we specialize to the case of a
GWB and describe the analysis implementations as they
currently exist. The Bayesian GWB analysis started with
the pioneering work of van Haasteren et al. [28]. While the
brute force inversion of a full NTOA × NTOA matrix was
possible with ∼103 TOAs at the time of publication, it
would not work today with ∼5 × 105 TOAs. The modern
PTA likelihood was introduced in [29] where the authors
expanded the red noise in a set of Fourier coefficients.
Lentati et al. [29] marginalized over the timing model as
in [28] and added an additional marginalization over the
Fourier coefficients. van Haasteren and Vallisneri [30,31]
used the connection between these methods and the theory
of Gaussian processes leading to further optimizations in
the likelihood computation and sampling.
Complementary to Bayesian approaches, the NANOGrav

frequentist GWB analysis uses the so-called optimal statistic
(OS), an estimator of the amplitude and significance of a
GWB. Initially, this statistic was formulated in the frequency
domain [32], and later it was reimplemented in the time
domain [27]. Traditionally, it has been formulated in the
regime where the amplitude of the GWB is much lower than
the amplitude of the intrinsic red noise in the pulsars, an
assumption that has been relaxed recently [33]. Additionally,
the optimal statistic relies upon an estimate of the intrinsic
red noise in each pulsar. Our estimates of intrinsic red noise
are uncertain, and using a specific choice of the red noise can
result in a biased statistic [34]. The solution is to create a
hybrid Bayesian-frequentist “noise-marginalized” optimal
statistic, in which the optimal statistic is computed over

many posterior draws for our red noise model, creating a
distribution for the amplitude estimate of the GWB and its
associated significance. It is common practice to average the
optimal statistic over this distribution [34], although recently
alternative approaches have also been proposed [35].
The traditional optimal statistic assumes that there is only

one type of spatial correlation in the data. Monopolar and
dipolar correlations are also possible, resulting from sys-
tematic issues such as clock errors [36] or solar system
ephemeris errors [37], respectively, and so potentially there
will be multiple spatially correlated signals in the data
simultaneously. When searching for only one type of
spatially correlated signal at a time, one might make spurious
detections due to the contribution of other spatially corre-
lated signals. The solution to this is to simultaneously fit for
multiple spatial correlation patterns using the multiple-
correlation optimal statistic (MCOS) [38].
These methods have evolved conceptually over the

past decade, and so have their software implementations.
NANOGrav maintains a set of publicly available software
packages that are written in the Python programming language
and make extensive use of NumPy and SciPy [39,40]. The
packages that we focus on in this work include Enterprise,1

enterprise_extensions,2 PTMCMCSampler,3 and
la_forge4 [41–44]. In this paper, we review these pack-
ages and perform a campaign of simulations to validate
them for the specific case of searching for a GWB with
NANOGrav data, as performed in NANOGrav’s 15-year
GWB analysis [19]. We base all simulations in this paper on
the NANOGrav 15-year dataset, using all 67 pulsars that
have been timed for more than three years [18].
Inspired by probabilistic programming packages such

as Stan [45] and PyMC [46], Enterprise allows the specification
of probabilistic data models for PTAs, and the evaluation
of the resulting priors and likelihoods. By contrast,
enterprise_extensions contains prebuilt models
that are commonly used in PTA analyses. It also includes
hypermodels used in Bayesian model selection by way of
product-space sampling, as well as implementations of the
OS, MCOS, and a noise-averaged version of these known as
the “noise-marginalized” optimal statistic (NMOS). We use
PTMCMCSampler, a parallel-tempering enabled Markov-chain
Monte Carlo (MCMC) sampler, to approximate the posterior
of the models created with Enterprise. Finally, once we finish
sampling, we use la_forge to compress and post-process
the resulting chains.
We address two main issues in this work. First, as the

number of pulsars in our dataset increases, our array gains
sensitivity and the computations become longer due to an
increased number of parameters and the increased cost of

1https://github.com/nanograv/enterprise.
2https://github.com/nanograv/enterprise_extensions.
3https://github.com/jellis18/PTMCMCSampler.
4https://github.com/nanograv/la_forge.
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likelihood calculation. Robust Bayes factor calculations
such as thermodynamic integration also require large
amounts of computational resources which were previously
prohibitive, taking months to complete before speeding up
the likelihood calculation. Bayes factors between many of
the models computed in the 15-year analysis provide an
intractable challenge for the standard product-space model
comparisons which have been used in previous analyses
due to the large Bayes factors and difficulty of finding a
good weight to allow for the chains to switch between
the models easily. Thermodynamic integration solves this
issue and is especially necessary in the cases where the
Bayes factor is very large or very small. Performing a large
series of Bayesian analyses, such as are used in the
Bayesian false-alarm probability calculations [19], is also
computationally prohibitive. To speed up these computa-
tions, we implement a ∼5× faster method of likelihood
computation, which is equivalent mathematically to the
previous method. Second, the original optimal statistic
for PTAs [27] works well as a detection statistic under
the no-signal null hypothesis, but remains biased as an
estimator for the GWB amplitude. We check that this bias
has been reduced by accounting for a GWB. Both of these
methods provide crucial adjustments to the NANOGrav
methods for future analyses, as the number of pulsars
increases and the background becomes even more promi-
nent in our dataset.
In Sec. II, we describe the traditional likelihood compu-

tation and a new faster implementation for situations
where the white-noise parameters remain constant. We also
describe the computational scaling associated with each
calculation. In Sec. III we discuss using Enterprise along with
PTMCMCSampler to explore the high dimensional parameter
spaces in GWB analyses. Frequentist methods implemented
in enterprise_extensions are discussed in Sec. IV.
Next, we present tests on the Bayesian methods in Sec. Vand
frequentist methods in Sec. VI. Finally, we discuss possible
future directions and conclude in Sec. VII.

II. THE PTA LIKELIHOOD CALCULATIONS

First, we describe the standard and “fast” PTA like-
lihoods. Both of these likelihoods use Enterprise, a pure
Python package built to analyze pulsar noise, timing models,
and to search for GWs in PTA data. For a discussion of
Enterprise and its structure, see Appendix A.

A. The PTA likelihood

Our TOAs t can be written as

t ¼ tdet þ tstoc; ð1Þ

where tdet is the deterministic part of the TOAs, tstoc is the
stochastic part of the TOAs. After fitting the deterministic
part of the signal with a least squares fit, tM,

tdet ≈ tM þMϵ; ð2Þ

where Mϵ is a Taylor expansion of the residual determin-
istic part where M consists of derivatives in the Taylor
expansion. The details of the process used to produce the
timing model in the NANOGrav 15-year dataset can be
found in the dataset paper [18]. The stochastic part of
the TOAs

tstoc ¼ Fcþ n; ð3Þ

where c represent the Fourier coefficients, F represents a
discrete Fourier transform of the red noise processes in the
data, and n consists of white noise. Combining all of the
above and subtracting off the timing model fit, we find

δt ¼ t − tM ≈Mϵþ Fcþ n: ð4Þ

As in [29], we expand red noise in a set of Fourier
coefficients that determine a specific random realization
of a stochastic process,

Fc ¼
XN
j¼1

½Xj sin ð2πfjtÞ þ Yj cos ð2πfjtÞ�; ð5Þ

where alternating X, Y make up c, F contains alternating
columns of sine and cosine components, and fi ¼ i=T with
T the observing time span of the entire dataset (16.03 years
in the 15-year dataset5). Red noise may consist of compo-
nents intrinsic to the pulsar, such as spin noise, or even a
gravitational-wave background. We limit the number of
frequency binsN used based on the model of each red noise
signal. For pulsar intrinsic red noise, we limit ourselves to
30 frequency bins, which is sufficient to capture the high-
frequency content of the data. This corresponds to frequen-
cies from about 2 to about 60 nHz. The number of
frequencies used in the GWB analyses depends on how
we model it. For example, a two-parameter power law with
amplitude and spectral index in the 15-year dataset shows
that the red noise dips below the white noise at around 14
frequency bins or around 28 nHz [19]. While we could
include more frequency bins (50 were included in [47]),
adding more frequencies on this model would bias the
common power law spectral index and amplitude, unless a
more advanced red noise model is used [48]. Using a model
that allows each frequency bin to vary independently is
known as a “free spectrum model.” For this model, bins are
not affected significantly by adjacent bins, and we use the
same 30 frequency bins on the GWB that we use on the
intrinsic red noise. Therefore, including more frequency
bins on common signals has negligible influence on a free

5The dataset has been so named because the pulsar with the
longest observation time span contains 15.8 years of data.
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spectrum analysis, but this model also includes an addi-
tional parameter per frequency bin.
Several types of white noise parameters are searched

over that adjust the TOA uncertainties found during
template fitting, e.g., [49]. EQUAD Q is an extra factor
added in quadrature to the TOA uncertainties. EFAC G
rescales the TOA uncertainties and EQUAD together.
Finally, ECORR J is an extra term that correlates different
frequency bands within the same epoch, a term which here
means a single observation. A single observation (epoch)
could be a single day or it could be a combination of
multiband data from separate days combined. Separate
epochs remain completely uncorrelated. ECORR can
account for pulse jitter [20]. Each of these white noise
signals add one dimension per pulsar per observing back-
end per frequency band used to acquire data. The white
noise covariance matrix can be written as

N ¼ hnnTi ¼
X
μ

½G2
μðσ2i þQ2

μÞδij þ J2μδeðiÞeðjÞ�; ð6Þ

where the ith TOA belongs to the backend μ, δij denotes the
Kronecker delta, and δeðiÞeðjÞ denotes another Kronecker
delta that equals 1 only when the epochs are the same for
both TOAs considered and 0 otherwise.
Subtracting the deterministic and stochastic models

results in the residual,

r ¼ δt −Mϵ − Fc: ð7Þ

Under a multivariate Gaussian assumption for the noise the
full likelihood can then be written as

pðδtjc; ϵÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πNÞp exp

�
−
1

2
rTN−1r

�
: ð8Þ

We then group the matrices and vectors into a more
compact notation,

T ¼ ½M F �; b ¼
�
ϵ

c

�
; ð9Þ

and place a Gaussian prior on the Fourier coefficients with
covariance

BðηÞ ¼
�
E 0

0 ϕðηÞ

�
¼

�∞ 0

0 ϕðηÞ

�
; ð10Þ

where η contains the hyperparameters, i.e., the parameters
of the prior such as amplitudes or spectral indices of the
GWB or red noise power laws. We let E be a diagonal
matrix of very large values (1040 by default) in B. This
places an improper, almost-infinite variance Gaussian prior

on the timing model parameters. However, these parame-
ters are well determined by pulsar timing observations and
thus likelihood dominated. Upon inversion, this choice
marginalizes over the timing model uncertainties [29–31].
The covariance matrix for the red noise coefficients,

ϕ ¼ hccTi; ð11Þ

can be constructed via blocks. Each block contains

Nfreq ¼ max ðNIRN; NGWBÞ; ð12Þ

frequencies where NIRN is the number of frequencies
used on the intrinsic red noise, and NGWB is the number
of frequencies used on a red noise process common among
pulsars (correlated or not). If we denote the block con-
taining the frequencies of pulsars as ða; bÞ, and we further
specify each frequency as ði; jÞ, then

½ϕ�ðaiÞðbjÞ ¼ hcaicbji ¼ δijðδabφai þΦab;iÞ; ð13Þ

with

Φab;i ¼ ΓabΦi; ð14Þ

where the overlap reduction function (ORF), Γab, describes
the correlations between pulsar pairs. In the isotropic
GWB analysis, the ORFs we can search for include a
no-correlation ORF for CURN, monopolar correlations that
could be caused by clock corrections [36], dipolar corre-
lations that could be caused by solar system ephemeris
errors [37], and the HD correlations that are characteristic
of a GWB:

ΓCURN
ab ¼ δab; ð15Þ

ΓMON
ab ¼ 1; ð16Þ

ΓDIP
ab ¼ cos θab; ð17Þ

ΓHD
ab ¼ 1

2
δab þ

3

2
xab ln xab −

1

4
xab þ

1

2
; ð18Þ

where xab ¼ ð1 − cos ξabÞ=2 and ξab is the angle between
pulsars a and b on the sky. The terms ρ and κa are related to
the power spectral density, SðfÞ of the time delay caused by
intrinsic red noise or a GWB, respectively, as

φai;Φi ¼ SðfiÞΔf ¼ SðfÞ=T: ð19Þ

A typical model choice for these spectra is a power law,

φai;Φi ¼
A2

12π2
1

T

�
fi
fref

�
−γ
yr2; ð20Þ
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where the GWB characteristic strain is

hc ¼ A

�
f
fref

�
α

; ð21Þ

with γ ¼ 3 − 2α. Provided that the GWB is made up of
signals from an ensemble of supermassive black hole
binaries, we expect γ ¼ 13=3 (α ¼ −2=3) [50]. The refer-
ence frequency, fref , traditionally has been set to 1=yr−1,
and this is the value that we use in our simulations. For the
intrinsic red noise and common uncorrelated red process,
A and γ, A and γ are the hyperparameters, η, for a power
law spectrum model.
In the traditional form of the likelihood, we analytically

marginalize over b. This is a simultaneous marginali-
zation over the timing model uncertainty and red noise
coefficients,

pðδtjηÞ ¼
Z

pðδtjbÞpðbjηÞdb; ð22Þ

where

pðbjηÞ ¼ exp ð− 1
2
bTB−1bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð2πBÞp ; ð23Þ

is a Gaussian prior with hyperparameters η. Evaluating the
integral gives

pðδtjηÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πCÞp exp

�
−
1

2
δtTC−1δt

�
; ð24Þ

where the covariance matrix is now

C ¼ N þ TBTT: ð25Þ

Such an inversion can be efficiently evaluated with the
Woodbury matrix identity,

C−1 ¼ N−1 − N−1TΣTTNq−1; ð26Þ

with

Σ ¼ ðB−1 þ TTN−1TÞ−1: ð27Þ

This formulation reduces the number of operations
required for the computational bottleneck from an inversion
of the full covariance matrix C, which takes OðN3

pN3
TOAÞ

operations to the inversion of Σ, which takes
OðN3

pð2Nfreq þ NMÞ3Þ. Given that the number of TOAs
is ∼105, Nfreq ¼ 30, NM ∼ 102, the savings are significant.
The white noise covariance matrix is block-diagonal

with a block for each observation epoch. We invert each
block efficiently using the Sherman-Morrison formula

N−1
b ¼ H−1

b −
H−1

b uuTH−1
b

J−2 þ uTN−1
b u

; ð28Þ

whereHb contains the diagonal elements of the white noise
covariance matrix, and

uT ¼ ð1; 1;…; 1Þ; ð29Þ

with length of the number of TOAs in the epoch. While this
could be a non-negligible part of the computation, we fix
the white noise in the GWB analysis, and therefore we do
not consider the speed of evaluation here.

B. Faster likelihood for GWB analyses

White-noise parameters are varied in noise runs prior
to performing any GWB analyses. After these initial runs,
all white noise parameters are set to their median
marginalized posterior values to reduce the total number
of parameters from ∼103 to ∼102. When modeling the
stochastic processes as a power law, this results in 136
parameters: two parameters for each of the 67 pulsar’s
intrinsic red noise parameters, and two for the GWB.
White noise parameters in Enterprise are cached to speed up
evaluation time significantly after the initial likelihood
evaluation.
Starting with the same multivariate Gaussian in Eq. (8),

we now marginalize in two steps instead of simultaneously.
Marginalizing over the timing model,

pðδtjc;EÞ ¼
Z

pðδtjϵ; cÞpðϵjηÞdϵ; ð30Þ

with the Gaussian prior

pðϵjηÞ ¼ exp ð− 1
2
ϵTE−1ϵÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð2πEÞp ; ð31Þ

and E ¼ hϵϵTi. This integral results in

pðδtjcÞ ¼ exp ð− 1
2
ðδt − FcÞTD−1ðδt − FcÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð2πDÞp ; ð32Þ

with

D ¼ N þMEMT: ð33Þ

We use the Woodbury matrix identity for this inversion,

D−1 ¼ N−1 − N−1MΛ−1MTN−1; ð34Þ

with

Λ ¼ E−1 þMTN−1M ¼ MTN−1M; ð35Þ
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because diagðEÞ → ∞.6 Now, we complete the two-step
marginalization procedure by marginalizing over the
Fourier coefficients,

pðδtjηÞ ¼
Z

pðδtjcÞpðcjηÞdc; ð37Þ

with the Gaussian prior

pðcjηÞ ¼ exp ð− 1
2
cTϕ−1cÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

detð2πϕÞp ; ð38Þ

resulting in

pðδtjηÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2πKÞp exp

�
−
1

2
δtTK−1δt

�
; ð39Þ

where

K ¼ Dþ FϕFT; ð40Þ

and once again we use the Woodbury matrix identity to
invert this covariance matrix. We find

K−1 ¼ D−1 − D−1FΘFTD−1; ð41Þ

with

Θ ¼ ðϕ−1 þ FTD−1FÞ−1: ð42Þ

As long as D−1 can be cached in its entirety, the compu-
tation will be faster with the two-step marginalization,
Eq. (39), over the simultaneous marginalization procedure,
Eq. (24). Now, the Θ inversion in Eq. (42) dominates the
likelihood computation with OðN3

pð2NfreqÞ3Þ operations.

C. Empirical computational scaling
for likelihood evaluations

As shown in Fig. 1, we find a significant improvement
in the fast version of the likelihood, Eq. (39), over the
traditional likelihood Eq. (24). With 67 pulsars, in the
HD-correlated model, the fast likelihood leads to 5.65 times
faster evaluation than the traditional computation. The
speed up factor is reduced to 3.8 in the CURN model.
Empirically, as the number of pulsars increases, the
difference in evaluation times also increases for the
HD-correlated case.
Empirically, we do not find that all computations

currently scale as OðN3
pÞ. By fixing the number of

frequency bins used in each model and including pulsars
in alphanumeric order, we can compare the matrix inver-
sion cost among models and check how the computations

FIG. 1. (a) Comparison between the empirical scaling of HD-correlated models for both the simultaneous marginalization procedure
(labeled “traditional likelihood”) and the new two-step marginalization procedure (labeled “fast likelihood”) which runs faster for
models where the white noise is not being varied. In the latter case, we can cache the D matrix resulting in a drastic reduction in
computation time at the cost of some memory. Inversions in both methods use a sparse Cholesky decomposition method on a single CPU
core. This new marginalization procedure results in an average speed increase per evaluation of 5.65× for 67 pulsars. (b) Comparison
between the CURN models using the different marginalization procedures. Inverting the now diagonal matrix of these models is trivial.
The reduction in number of elements required to be inverted results in a speed increase of 3.80× for 67 pulsars. Individual points and
uncertainties are found by averaging over 100 evaluations of a model and taking the standard deviation. Fits to the points have been
made with a nonlinear least squares algorithm fitting A, B, C to a function fðNpÞ ¼ ANB

p þ C.

6Formally, we use the matrix determinant lemma to evaluate
the determinant in Eq. (32) as

detðDÞ ¼ det ðE−1 þMTN−1MÞ detðEÞ detðNÞ; ð36Þ

where diagðEÞ ¼ ∞. However, in practice we can use 1040 as an
effectively infinite value and avoid dealing with the infinite
determinant term.
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scale with number of pulsars. There are two separate
likelihood implementations: a sparse version that uses
scipy.sparse.csc compressed sparse column matri-
ces along with a sparse Cholesky decomposition scikit-
sparse [51–53] and a version that uses a dense Cholesky
decomposition. Through profiling, we find that the dense
computation indeed scales as OðN3

pÞ and is generally
slower than the sparse method on a single core. The sparse
method instead scales as OðN2

pÞ using the fast likelihood,
Eq. (39), or as OðN2.3

p Þ when using the slower version of
the likelihood, Eq. (24).
This OðN2.3

p Þ empirical scaling of the traditional like-
lihood displayed in Fig. 1(a) can be traced to the sparse
Cholesky inversion Σ−1. In general, the sparse Cholesky
inversion does not have a strict scaling but depends on how
the matrix is structured. Because of this, the scaling of the
sparse Cholesky inversion may have some dependence on
the number of frequencies and pulsars used. By profiling
the code to see which parts use the largest fraction of the
total evaluation time, we find that in the sparse cases,
changing from a dense to a sparse matrix takes up the
majority of the computation time, and the inversion is
performed very quickly by comparison. This means that
our inversion has been sped up to a point where it is no
longer the bottleneck of the computation, and the OðN2

pÞ
pieces of the computation dominate the overall scaling for
Eq. (39) evaluations. Future work will aim to reduce the
computation time required in these OðN2

pÞ operations,
perhaps by working with sparse matrices from the start.
Indeed, this increased speed will be important in future

analyses. The addition of pulsar specific noise models to
the analysis may require an increase in the number of
frequencies Nfreq used in the Fourier basis. Increasing the
number of frequencies means that the bottleneck of the
calculation, the matrix inversion, now takes even longer.
With a hundred pulsars and additional frequencies
included, a single likelihood evaluation can take seconds
to evaluate. GWB analyses currently require millions of
samples, implying that, without the faster likelihood, a
single analysis would take a significant fraction of a year
or more to complete.

III. BAYESIAN METHODS AND SAMPLING
THE PTA PARAMETER SPACE

GW data analyses over the past decade have made use
of both Bayesian and frequentist statistical techniques.
Bayesian methods rely on Bayes’ theorem for parameter
estimation and model selection,

pðθjyÞ ¼ pðθÞpðyjθÞ
pðyÞ : ð43Þ

Given a descriptive model of the relevant data as a
likelihood pðyjθÞ and a prior distribution pðθÞ on the

parameters, we can sample the (unnormalized) posterior
pðθjyÞ, thus reallocating credibility from the prior across
parameter values. The normalizing factor in the denomi-
nator is known as the marginal likelihood or evidence,
and it may be used in deciding which of a set of models
is preferred.
Numerical methods to estimate pðθjyÞ when the dimen-

sion of θ is large typically depend on a form of stochastic
sampling to perform high-dimensional integrals for both
parameter estimation and model selection. In NANOGrav,
we use PTMCMCSampler [43], a parallel-tempering (PT)
enabled Metropolis-Hastings MCMC sampler. This has
been the NANOGrav sampler of choice for many years.
It has also recently been compared to other options
and recommended for use in PTA data analysis [54].
To sample the high-dimensional PTA parameter space,
we use the default proposal distributions that come with
PTMCMCSampler, and some other custom proposals which
will be enumerated and described below. By default,
PTMCMCSampler uses single-component adaptive metropolis
(SCAM), adaptive metropolis (AM), and differential evo-
lution (DE) proposal distributions, referred to in the code
as “jump proposals.” Additionally, the sampler supports
adding custom distributions. Details of this sampler were
also discussed in [55], but we reiterate them here with any
changes that have since been made.

A. Metropolis-Hastings algorithm

We use the Metropolis-Hastings algorithm [56,57] to
stochastically sample the posterior distribution given by the
likelihood and chosen priors. After enough iterations, the
sampler converges to a stable distribution that approximates
the posterior well regardless of where in the parameter
space we start. We will show tests of this in Sec. V. Under
certain circumstances convergence is guaranteed with an
infinite number of samples, but in the high-dimensional
parameter space that we search over, the amount of time
required for convergence can be prohibitive without well-
chosen proposal distributions.
First, we start with an initial set of parameters θ at

iteration t ¼ 0. Then, we draw a new point θ� from a
proposal distribution for each iteration Jtðθ�; θÞ. In the
Metropolis algorithm [56], such proposal distributions are
required to be symmetric, but the Metropolis-Hastings
(MH) algorithm [57] allows for asymmetric distributions
by the inclusion of the Hastings ratio. The MH algorithm
leads to the proposed point being accepted with log
probability [58]

ln A ¼ min ð0; lnRþ lnHÞ; ð44Þ

where R is the ratio of probabilities between the proposed
point and the old one,

lnR ¼ lnpðθ�jyÞ − lnpðθjyÞ; ð45Þ
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and H is a ratio which accounts for asymmetric proposal
distributions

lnH ¼ ln Jtðθjθ�Þ − ln Jtðθ�jθÞ: ð46Þ

Iterating for each t returns a chain of samples from the
posterior distribution. However, the number of samples
required to settle into a stationary distribution that approx-
imates the posterior well depends on several factors
including the autocorrelation length, which is related to
the number of parameters, and whether the distribution is
multimodal where the chain might get stuck in a single
mode. At each iteration, we draw a point from the proposal
distributions which is either accepted or rejected. If the new
point is accepted, then it is added to the chain. Otherwise, if
the new point is rejected, then the current point is added to
the chain instead. Chains produced in this way contain
samples that are not completely independent, and they are
correlated with themselves. In the case of a MH sampler,
the autocorrelation length is typically of the same order as
the number of parameters.

B. Parallel tempering

To improve exploration and mixing of the sampler,
we sample multiple chains with different exponents, known
as temperatures, and propose swaps between them in a
sampling scheme known as PT [59]. The posterior now
contains the likelihood raised to some power,

pðθjy; βÞ ¼ pðθÞpðyjθÞβ; ð47Þ

where β ¼ 1=T and T is known as the chain’s temperature.
Samples from one chain are propagated to the next via
swap proposals between chains of different temperatures.
The higher the temperature is, the more the posterior
becomes like the prior, enabling exploration of the param-
eter space and reducing the autocorrelation length of all
chains via swaps, increasing the number of effectively
independent samples. Though the cost of this scheme is
more evaluations of the likelihood, we often find that this is
more efficient because of the increased number of effec-
tively independent samples returned. It can also be used
to find the evidence as will be discussed in a later section.
We set a temperature for each of the chains using a
geometrically spaced ladder,

Ti ¼
�
Tmax

Tmin

�
expðiÞ; ð48Þ

where i ¼ 0; 1; 2;…, which should result in a ∼25%
temperature swap acceptance rate between adjacent chains
when sampling a multivariate Gaussian distribution [55].
In PTMCMCSampler, swaps are proposed between adjacent
chains, though in general swaps could be proposed between

any two chains in the ladder. Swaps are accepted between
temperatures Ti and Tj with log probability,

ln Aij ¼ min ð0; ðβj − βiÞ lnLijÞ; ð49Þ

where

lnLij ¼ lnpðyjθiÞ − ln pðyjθjÞ; ð50Þ

is the log likelihood ratio. Other temperature ladders are
possible including adaptive temperature spacing based on a
constant acceptance rate [60]. This improves the PT scheme
when sampling a posterior that is not a multivariate
Gaussian. While these different temperature spacings
certainly have advantages, they are not currently imple-
mented in PTMCMCSampler.
To perform parallel tempering swaps, we use multiple

cores to sample each chain simultaneously through the use
of MPI [61] and MPI4Py [62,63]. Previously, the sampler
used an asynchronous model for the temperature swaps,
so that chains could sample at their own paces and swap as
soon as the next one down reaches a specified interval.
These processes are now synchronized using blocking
commands, which are necessary for the standard product
space sampling method that NANOGrav uses for model
selection [64] (see Appendix B for a discussion of the
necessity of synchronizing the sampler).

C. Jump proposals

The GWB analysis uses several proposal distributions.
These distributions are critical for timely convergence and
exploration of the parameter space. Ideally, jump proposals
match the posterior closely to minimize the autocorrelation
length of the chain and thus reduce the number of samples
that need to be taken. The combination of all of these
proposals has proven to work well for the problem at hand,
even with the Oð100Þ parameters that we work with in the
15-year dataset. The proposal distributions discussed here
consist of the default in PTMCMCSampler along with empiri-
cal distributions and prior draws.

1. Adaptive metropolis

Upon initializing the sampler, PTMCMCSampler takes a list
of “parameter groups” as an argument. If we believe that
multiple parameters will be correlated, then we can add
them as a group, and the sampler will propose jumps in this
subspace. The full sample space of all parameters together
is always a group regardless of new groups. However, if no
groups are given, the entire sample space is considered the
only group. Typically, power law amplitude and spectral
indices are grouped together with a sampling group for
each individual pulsar.

PTMCMCSampler also requires a sample covariance matrix
at initialization. Periodically, we compute a sample covari-
ance matrix Cs from the chain’s history for each sample
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group using an online algorithm (see Appendix D) to avoid
storing the entirety of the chain. Cs is then decomposed via
a singular-value decomposition,

Cs ¼ UsΣsVs
T: ð51Þ

This provides a robust generalization of the eigenvalue
decomposition and is used to jump along correlated
directions in the parameter space.
The adaptive Metropolis proposal distribution [65] uses

the sample covariance matrix to propose jumps in uncorre-
lated directions of the parameter space. First, we move the
usual parameters at the ith step of the chain θi into the
parameter combinations using

ζ i ¼ Us
Tθi: ð52Þ

Each jump proposed is given by a normal distribution,

ζ iþ1 ¼ ζ i þ
ffiffiffiffiffiffi
Σg

p
N ð0; cdÞ; ð53Þ

where Σg is the sample covariance matrix for the specific
group in which the jump is proposed, and

cd ¼
2.4sffiffiffiffiffiffiffiffiffiffiffi
2ndim

p ; ð54Þ

where s is a scale parameter and ndim depends on the
number of dimensions of the group that the jump is
proposed in.. For each default jump, 3% of jumps have
their scale multiplied by 10, 7% of jumps have their scale
multiplied by 0.2, and the other 90% have unmodified
scale. In all cases, the relative scale of the jump is adjusted
based on the temperature of the chain. The mix of small,
medium, and large jumps helps the sampler find the scale of
the parameter space being explored. To project back into a
jump in the original parameters, we use

θiþ1 ¼ Uζ iþ1: ð55Þ

2. Single-component adaptive metropolis

Similar to the adaptive Metropolis jump, the SCAM
jump [66] uses the sample covariance matrix, but only
moves along one uncorrelated direction in the parameter
space. Once again, we start by projecting onto the uncorre-
lated combinations of parameters ζ ¼ UTθ. We then
propose a jump in a single parameter direction as

ζjiþ1 ¼ ζji þ σjsN ð0; cdÞ; ð56Þ

where σjs is the jth diagonal element of the diagonal matrixffiffiffiffiffi
Σs

p
, and j labels the uncorrelated parameter for which we

are proposing a new point. Finally, we move back to the
original set of parameters using

θiþ1 ¼ Uζ iþ1: ð57Þ

3. Differential evolution

The final default proposal distribution in PTMCMCSampler

uses a simple genetic algorithm known as DE [67]. This
algorithm takes two samples from the history of the chain,
subtracts them, and proposes a jump along that direction. In
the current version of PTMCMCMSampler, the full chain is not
stored, and it instead draws from a buffer formed over many
unthinned iterations of the sampler. By keeping this buffer
much longer than the autocorrelation length of the sampler,
we ensure that the draws come from a stationary distribu-
tion. The DE jump draws two samples θm and θn and then
proposes a jump

θiþ1 ¼ θi þ sDEðθm − θnÞ; ð58Þ

where sDE ¼ 1 or

sDE ∼ Uniform

�
0;

2.4ffiffiffiffiffiffiffiffiffiffiffiffiffi
2βndim

p
�
; ð59Þ

each with 50% probability with β ¼ 1=T and ndim the
number of dimensions in which the jump is proposed.

4. Empirical distributions

Before the GWB analysis, we run a noise analysis on
each pulsar individually. This run includes white noise
(EFAC, EQUAD, ECORR) and a power-law intrinsic red
noise (amplitude and spectral index). From each of these
runs, we find a posterior for the intrinsic red noise, and we
create white noise dictionaries with which to set the white
noise values constant during the full analyses. Out of these
posteriors, we can make 1D or 2D histograms that we can
then sample from during the full GWB analysis to propose
as new points. During the creation of these histograms, all
bins’ counts are incremented by one to allow exploration of
the entire prior. They are then checked to make sure they
cover the prior before starting any sampling that includes
them so that they do not bias parameter recovery. Such
histograms are known as empirical distributions (see
Appendix A in [68]). Typically, we use 2D empirical
distributions on the intrinsic red noise parameters for each
pulsar. This provides excellent proposals if the empirical
distributions are somewhat close to the posteriors on the
parameters that we propose jumps in. Empirical proposal
distributions reduce the number of samples required to
achieve stationarity, sometimes called the burn-in, signifi-
cantly. Importantly, empirical distributions are only a small
part of our overall mix of proposal distributions that include
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many proposals that suggest points across the entire
prior space.

D. Parameter estimation

Parameter estimation provides crucial information for
astrophysical inference. The full multidimensional pos-
terior, can be used to find the marginalized posteriors for
each of the parameters. Convergence and exploration of the
parameter space is critical to finding the maxima of the
likelihood function and to sampling them effectively. GWB
analyses typically involve millions of likelihood evalua-
tions due to the large autocorrelation lengths of the chains.
It can take many evaluations to get a reasonable number
of effective samples. As a test of the procedure, we have
verified the different runs on a single simulation return the
same result regardless of where we start in the param-
eter space.

1. Gelman-Rubin R̂ diagnostic

We use the Gelman-Rubin R̂ diagnostic [69] to check the
stationarity of the chain. This does not necessarily mean
that the chains have converged, but it tells us that the
samples are coming from one part of the parameter space.
The diagnostic splits the MCMC chain into multiple
segments and checks the within-chain and between-chain
statistics to confirm that the chain is in a stationary state.
A threshold is required to tell whether the chain passes or
fails the diagnostic. As suggested by [70], we use 1.01 as
the R̂ threshold. In all tests performed in this work, we use
the R̂ diagnostic to make sure the chains are stationary
before performing tests. This diagnostic is implemented in
la_forge for ease of use in PTA data analysis.

E. Model selection: Bayes factor calculations

To compare models, we need to compute the marginal
likelihood or evidences for each model. Division of these
evidences return Bayes factors. The standard method of
calculation used in NANOGrav is a form of product space
sampling [64,71]. We refer to this method as the hyper-
model framework (henceforth hypermodel), and it is
implemented in enterprise_extensions. Other
methods for finding the model evidence include reweight-
ing the posterior [72], thermodynamic integration [73,74],
and nested sampling [75].

1. Hypermodel framework

The hypermodel concatenates different models into a
single model by combining their joint parameters into a
set of parameters that contains only the unique parameters
between the models. During sampling, a continuous
“switch” parameter called nmodel changes between the
models turning on only the parameters that belong to the
“on” model. By sampling the models and this switch
between them, we can compute an odds ratio comparing

how many times each of the models were sampled. This
corresponds directly to a Bayes factor between the two
models. The uncertainties are then computed using a
standard bootstrap in which we resample the thinned
nmodel marginalized posterior with replacement and
recompute the odds ratio. The odds ratio is averaged and
a standard deviation calculated over a number of realiza-
tions to give the final Bayes factor7 with uncertainties.
In current data, we often find the situation where Bayes

factors for one model or another are significantly disfa-
vored. Adding a log weight to the log likelihood can
remedy such a situation. To accomplish this, we add a
constant value to the log likelihood, scaling the likelihood
by the exponential of the log weight. We can find a weight
estimate by subtracting the maximum posterior values
between the two models being compared. This results in
a more even mixing between the two models, and the
weight can be undone in postprocessing by multiplying the
Bayes factor by the exponential of the log weight.

2. Reweighting

Reweighting is a simple technique that utilizes existing
samples from a probability distribution, the approximate,
to obtain an estimate of some other probability distribu-
tion, the target, which shares support with the approximate.
Each existing sample is “weighted” by the ratio of the
target and approximate probability densities. These
weighted samples are an estimate of the target distribution,
whereas the weights can be used to estimate Bayes factors
and uncertainties. Since the samples of the distribution
have already been produced, each weight can be calculated
in parallel, increasing the speed at which the target space
can be evaluated. Reweighting results in a reduction in the
number of effectively independent samples based on how
disjointed the posteriors are between the approximate and
target, but it often is still much faster than directly
sampling the target posterior directly. This technique is
particularly effective in cases where the two distributions
have similar support on similar regions in the parameter
space but one distribution is significantly faster to evaluate.
In the context of PTAs, reweighting has been used to
generate HD posteriors from the faster-to-evaluate CURN
posteriors [72].

3. Nested sampling

Nested sampling [76], a staple for GW analyses in
current ground-based detectors, returns a Bayes factor
and posterior samples. It computes the evidence integral
by turning the multidimensional integral into a one-
dimensional integral. N “live” points are sampled from
the priors and the space outside of the lowest likelihood

7Note that the odds ratio is only equal to the Bayes factor if the
prior odds are the same for each model in consideration.
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point is removed, thereby reducing the volume considered
by approximately 1=N. In this way, nested sampling climbs
the likelihood distribution in a global way and eventually
reaches a stopping criterion set by the error on the log
evidence. Overall it has a reputation for being easy to use, for
being good at findingmultimodality, and for having stopping
conditions that do not require much input from the user [77].
In PTA data, we find it difficult to use nested sampling on the
full GWB analysis due to the high number of parameters.
However, we use nested sampling with a reduced set of the
data below to check our Bayes factors with 30 parameters. In
this case, using Ultranest [75] returns the evidence for each
model, but with much larger uncertainty over the same
computation time span as the hypermodel.

4. Thermodynamic integration

If we use enough chains over a broad enough set of
temperatures, then parallel tempering also can be used to
compute the evidence. By taking the average of the log
likelihood on each sampled temperature, we can integrate
over this to yield the model evidence. The log evidence is
given by [73,74],

ln pðδtjMÞ ¼
Z

0

−∞
βEβ½lnpðδtjη;MÞ�d ln β; ð60Þ

where β ¼ 1=T, M is the model of interest, and we are
integrating with respect to ln β. We use two separate
methods to evaluate uncertainties on evidence estimates.
In one, we use a cubic spline which is fit using a trans-
dimensional algorithm known as the reversible jump
MCMC algorithm [78], and in the other we use a bootstrap
on an interpolation between points in the integrand of
Eq. (60). There are two types of uncertainty here: the
discretization error that is determined by the number of
temperatures that we choose, and the sampling error that is
determined by the number of independent samples.

IV. FREQUENTIST METHODS AND THE
OPTIMAL STATISTIC

Fully Bayesian methods, especially when used for model
selection, can be computationally expensive. In this sec-
tion, we consider a detection statistic and an estimator for
the GWB that are built from directly cross-correlating
arrival times between pulsars. We first consider the statistic
in the case where the amplitude of the GWB is small
compared to the noise, which is what has traditionally been
assumed. This statistic is still important for null hypothesis
testing, although it can be improved upon when used as an
estimator for the strength of the background. We then move
on to consider the situation where the background cannot
be neglected, and present an estimator that properly
accounts for the background itself. We also discuss how
to construct a “binned” estimator across the sky to yield a
HD reconstruction that takes into account the size of the

background. We finish by presenting a version of the OS
that simultaneously fits for multiple correlation patterns.
We also highlight the effect of the choice of noise
parameters used in constructing the OS.

A. Traditional optimal statistic

We begin by considering the noise-weighted match
between the correlation of data in pulsar a with data in
pulsar b:

ρab ¼
δtTaP−1

a Φ̃abP−1
b δtb

trðP−1
a Φ̃abP−1

b Φ̃baÞ
≡ δtTaQabδtb; ð61Þ

Qab ¼
P−1
a Φ̃abP−1

b

trðP−1
a Φ̃abP−1

b Φ̃baÞ
; ð62Þ

where for two different pulsars, a and b, we have

Pa ¼ hδtaδtTai ¼ Da þ FaϕaaFT
a ; ð63Þ

Φ̃ab ¼
FaϕabFT

b

ΓabA2
gw

: ð64Þ

The normalization of Φ̃ab is chosen such that hρabi ¼
ΓabA2

gw. In the small signal regime, the variance of this
correlation is σ2ab ¼ ðtrP−1

a Φ̃abP−1
b Φ̃baÞ−1. If we assume

that the cross-correlation for one pair of pulsars is not
correlated with the cross-correlation of another pair of
pulsars, i.e., hρabρcdi ∝ δacδbd, then we can perform a
variance-weighted, HD-matched sum over these correla-
tions to estimate the amplitude of the GWB from all pairs,

Â2
gw ¼

P
a

P
b>a ρabΓabσ

−2
abP

a

P
b>a Γ2

abσ
−2
ab

; ð65Þ

σ2gw ¼
�X

a

X
b>a

σ−2abΓ2
ab

�
−1
: ð66Þ

This statistic is often used for null hypothesis testing for
GWB detection. Under the (null) assumption that A2

gw ¼ 0,
the variance of this estimator can be used to construct a
signal-to-noise ratio (S/N),

S=N ¼
P

a

P
b>a ρabΓabσ

−2
ab

ðPa

P
b>a Γ2

abσ
−2
abÞ1=2

; ð67Þ

which we calculate on the data and then compare to
its expected distribution under the null hypothesis.
The distribution for this statistic is a generalized χ2

distribution [79], but it is often estimated empirically using
methods that destroy correlations but preserve potential
mismodeling. Two such methods are sky scrambles [80]
and phase shifts [81].
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Construction of the matrices in Eqs. (63) and (64)
requires a choice of hyperparameters η. Specifically, the
red noise parameters for each pulsar are used to construct
Da, and the CURN amplitude and spectral index are used to
construct ϕab. The natural choice for these parameters are
those taken from the Bayesian analysis. However, choosing
the maximum likelihood parameters for η from a fully
Bayesian run, or jointly maximizing the individual 1D
posteriors for each parameter, leads to a bias in the
recovered value of A2

gw [34]. Part of this bias is due to
making a single choice of noise parameters. By averaging
the statistic calculated over draws of η from a posterior
chain, resulting in what is referred to as the NMOS,
this bias can be partially alleviated. Additionally, a single
choice of hyperparameters could result in a larger value of
the S/N than is representative of the dataset. In general,
therefore, the S/N is averaged over many draws from
pðηjδtÞ, and this average is used as a detection statistic.
Other approaches have also been proposed, e.g., averaging
the p value associated with the S/N for each draw, instead
of averaging the S/N [35].
The OS defined in Eqs. (65) and (66). It is implemented in

the compute_os method of the OptimalStatistic
class, which is found in the frequentist.optimal_
statistic module of enterprise_extensions.
The NMOS (described in the previous paragraph) is imple-
mented as the compute_noise_marginalized_os
of the same class, and takes a MCMC chain and a list of
parameter names as input.

B. Optimal statistic with a non-negligible GWB

In the case where A2
gw is comparable to the red noise level

in some pulsars, the assumption that hρabρcdi ∝ δacδbd
breaks down. We must account for the covariance between
correlations when constructing both Â2

gw and especially its
variance, which will be dominated by the background itself.
When accounting for the covariance between correlations
due to the GWB we find

Σab;cd ¼ hρabρcdi − hρabihρcdi; ð68Þ

¼ trðQbaPacQcdPdbÞ þ trðQbaPadQdcPcbÞ; ð69Þ

where

Pab ¼ hδtaδtTbi ¼ δabDa þ FaϕabFT
b : ð70Þ

We can then construct a least-squares estimator for the
background using this covariance matrix,

Â2
gw ¼ ΓTΣ−1ρ

ΓTΣ−1Γ
; ð71Þ

σ2A2
gw
¼ ðΓTΣ−1ΓÞ−1; ð72Þ

where Σ is given by Eq. (68), ρ is a vector of paired
correlations, and Γ is a vector of the HD correlation
coefficients corresponding to each pair. It is important to
note here that construction of Pab and therefore Σ requires a
choice of η. That is, some choice of A2

gw is needed to
actually construct our estimator. One can take an iterative
approach, where we begin with a choice of η [e.g.,
the maximum a posteriori draw from pðηjδtÞ], evaluate
Eq. (71), and then use the resulting Â2

gw to construct Σ,
iterating until convergence. In practice, we have found this
converges rapidly, and is consistent with results that use a
single iteration with an initial choice of A2

gw estimated from
the posterior pðηjδtÞ.
It is also common to estimate the strength of the observed

background using subsets of paired correlations that have
similar separations on the sky. The individual bins should
then trace the HD curve. We collect pairs that fall into a
single bin, initially choosing the number of bins we would
like, and then assigning pulsar pairs to bins such that there
are roughly the same number of pairs in each bin. We label
the average angular separation between pulsars in the ith
bin as ξi, and construct an estimator for the correlated
power in each bin, ρopt;i, whose expectation is given by
hρopt;ii ¼ ΓξiA

2
gw. In this case Γξi is the HD correlation

coefficient evaluated at the average angular separation for
pulsar pairs in the ith bin. Other choices could also be
made, and would slightly change the results [33].
Motivated by our choice of binning, we can imagine Σ
taking a block form where the i, i block corresponds to
correlations between pairs in bin ξi, and the i, j block
corresponds to correlations between pairs in ξi and pairs in
ξj. The resulting estimator is given by [33]

ρopt;i ¼ Γξi

ΓT
i Σ−1

ii ρi
ΓT
i Σ−1

ii Γi
; ð73Þ

where Γi is a vector of the overlap reduction function for all
pairs in bin i, ρi is the vector of paired correlations in bin i.
The nonzero GWB induces correlations between these bins
as well, and this covariance matrix is given by [33]

Bij ¼ hρopt;iρopt;ji − hρopt;iihρopt;ji; ð74Þ

¼ ΓξiΓξj

ΓT
i Σ−1

ii ΣijΣ−1
jj Γj

ðΓT
i Σ−1

ii ΓiÞðΓT
j Σ−1

jj ΓjÞ
: ð75Þ

C. Optimal statistic for multiple correlation patterns

Reference [38] arrived at the MCOS through a χ2

approach, with

χ2 ¼
X
ab

�
ρab −

P
αA

2
αΓα

ab

σab

�
2

; ð76Þ
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ρab given by Eq. (61), and σab its associated uncertainty.
The label α now indexes different spatial correlation
patterns. For example, one can jointly minimize χ2 with
respect to A2 for both a HD-correlated process and a
monopole process, and calculate the associated covariance
matrix between those estimators.
By generalizing the optimal statistic to include more than

one ORF simultaneously, one arrives at the MCOS,

Â2
α ¼

X
β

BαβCβ; ð77Þ

where α and β are individual ORFs, and

Bαβ ≡X
a

X
b>a

Γα
abΓ

β
ab

σ2ab
; ð78Þ

Cβ ≡X
a

X
b>a

ρabΓ
β
ab

σ2ab
: ð79Þ

When denoting matrices in this notation, upper and lower
indices indicate matrix inverses with respect to one another.
The variance on the individual estimators for each spatially
correlated process is given by

σ2
Â2
α
¼ Bαα: ð80Þ

The noise-marginalized version of the MCOS follows a
similar structure as the noise-marginalized version of the
original optimal statistic. By drawing parameters from the
MCMC chains, we average over the noise and return a
distribution of values.
The MCOS is implemented in the compute_multi-

ple_corr_os method of the OptimalStatistic
class. The noise marginalized version of the MCOS is
implemented as the compute_noise_marginali-
zed_multiple_corr_os method.

V. TESTS OF BAYESIAN METHODS:
PTMCMCSampler AND Enterprise

Here, we perform tests robustness of our Bayesian
methods. The tests performed here use the faster likelihood
with the two-step marginalization procedure. We begin
these tests by checking prior recovery. This tests that our
proposal distributions satisfy detailed balance, a condition
required for the chain samples to reflect the posterior. Next,
we create simulations based on the 15-year NANOGrav
data and check for unbiased posteriors. Simulations are
produced directly from Enterprise models using the TOAs
from the 15-year data. Therefore, good posterior recovery
implies that the models we use are self-consistent and that
the recovered posteriors are in the correct place with the

right width. Finally, we use a reduced version of the data to
check that Bayes factors agree among different methods of
computation. If the different methods agree, we conclude
that our calculations are working properly.

A. Prior recovery tests

To test the proposal distributions incorporated in
PTMCMCSampler and enterprise_extensions, we
sample a posterior that is equal to the priors by setting
the likelihood equal to the prior and the prior to a constant.
PT only tempers the likelihood in PTMCMCSampler, so it is
necessary to sample the prior as the likelihood to also test
this part of the sampler. If the proposal distributions satisfy
detailed balance, then the recovered posterior equals the
input priors within sampling uncertainties. PTMCMCSampler

contains three default proposal distributions known inside
the code as “jump proposals.” Additional jump proposals
come from enterprise_extensions, and which
proposals get used depends on the type of search being
performed. The isotropic GWB analyses includes AM,
SCAM, and DE proposals. Additionally, this search
includes prior draws and two-dimensional empirical dis-
tributions on the intrinsic red noise amplitudes and spectral
indices for each pulsar.
To assess prior recovery, we use a quantile-quantile

(Q-Q) plot. Q-Q plots compare the quantiles of the
distribution of our recovered prior with samples drawn
from a simulated distribution of the input. We subtract the
mean of the simulated distribution from every point in our
plot so that the mean falls along zero on the vertical axis.
The expected result is a set of lines, one for each parameter,
falling within the given uncertainties with few venturing
outside the 3σ bounds. Bias could appear as a line
remaining significantly above or below the mean for the
entire interval indicating that more samples exist in one
quantile of the distribution.
We use the same prior for each spectral index parameter

γ and for each log amplitude parameter log10 A,

γ ∼ Uniform½0; 7�; ð81Þ

log10A ∼ Uniform½−18;−11�: ð82Þ

These priors are chosen specifically for this test and may be
slightly different in “production grade” analyses between
the intrinsic red noise amplitudes and the GWB amplitude,
because we can rule out very large GWB amplitudes since
they have not been observed in previous datasets. Spectral
index priors are typically the same for all parameters.
The NANOGrav 15-year GWB analysis uses 67 pulsars.
Assuming a power-law spectrum, each pulsar adds a
spectral index and an intrinsic red noise amplitude param-
eter. Along with the common process spectral index and
amplitude parameters, each of the plots in Fig. 2 contains
68 lines. The majority of the lines remain inside three sigma
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uncertainty bounds and only occasionally do lines venture
outside and then back toward zero.

B. Simulation recovery tests

Next, we create simulations to check that PTMCMCSampler

returns unbiased posteriors. To quantify whether our
posteriors are unbiased, we use a P-P plot.8 We make
these plots by creating 100 realizations of data, sampling
the posteriors, and finding the p value at which the
simulated value falls. These p values should follow a
uniform distribution. By taking the CDF of these values and
plotting them against the p values, we expect each
parameter (shown as a line on the plot) to follow a diagonal
line within some confidence interval. Since we model the
red noise as a power law and have 67 pulsars, there are 136
parameters searched over in each simulation: an amplitude
and spectral index for each pulsar’s intrinsic red noise
and an amplitude and spectral index for the common red
process that is shared among all pulsars. For this P-P plot,
we use the CURN model, because the computational
expense is small compared to the HD correlated model,
and the posteriors between the two models are similar.
Furthermore, Hourihane et al. [72] found that reweighting
the CURN plots using the HD model’s likelihood also
resulted in diagonal P-P plots. Given the similarity bet-
ween the two models’ posteriors, PTMCMCSampler should

have no extra problems with exploring the HD parameter
space given its effective exploration of the CURN param-
eter space.
We make simulations differently here than in other

papers which have used either LIBSTEMPO [82] and
TEMPO2 or PINT. The question of whether our models
match the simulations of realistic PTA data is outside
the scope of this study. Instead, we use the models in
Enterprise to simulate pulsar residuals with timing model
uncertainties, specified white noise, intrinsic red noise,
and either a CURN or a HD correlated GWB. The priors set
on these values are as shown in Table I. Crucially, the
distributions which we draw values from and the priors we
search over must be the same. If they are not, then the
P-P test will fail. We have reduced the prior space from the
full production analyses to limit ourselves to a detectable
part of the parameter space. While this is not required to
make good P-P plots, our purpose is to test whether we get

FIG. 2. Quantile-quantile plot showing the recovery of the prior. To produce this plot, we sample the prior in place of the likelihood
and set the prior to a constant. This is not the same as setting the likelihood to a constant, because we use a parallel tempering method
that only tempers the likelihood. Priors on the γ parameters are Uniform[0, 7], and the priors on the log10 A parameters are
Uniform½−18;−11�. The chains produced should be equal to the input prior distribution within the sampling uncertainties after thinning.
On the horizontal axis, we plot the parameter value associated with the quantiles of the simulated uniform distribution. On the vertical
axis, we plot the parameters associated with the quantiles of the distribution output from the sampling process minus the mean of
simulated parameters so that the mean lies along the zero of the vertical axis. The curved, solid lines show 1σ, 2σ, and 3σ uncertainties.
The uncertainty lines are created by taking the average and standard deviation over 10,000 realizations of a uniform distribution with the
same number of samples as the observed distribution. This plot shows that the priors were recovered correctly when using parallel
tempering, AM, SCAM, DE, empirical, and prior proposal distributions.

TABLE I. Priors sampled for the simulated values of simulation
realizations. IRN indicates an intrinsic red noise parameter and
CURN indicates a common uncorrelated parameter which is
common to all pulsars. These priors are also used in the search of
the simulations to recover posteriors for use in P-P tests.

Parameter Prior Values

IRN amplitude Uniform ½−15;−12�
IRN spectral index Uniform [2, 6]
CURN amplitude Uniform ½−16;−14�
CURN spectral index Uniform [2, 6]

8We could use Q-Q plots, which are quite general, for this too.
However, P-P plots are somewhat standard among the literature
for testing simulation recovery.
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unbiased results in the event of a set of parameters that have
strong signals visible.
The P-P plot produced in Fig. 3 indicates little bias in the

recovery of the simulated values. Lines that remain above
and below the diagonal could indicate that the recovery is
biased so that we find the simulated values either too low
or too high consistently. A signature “S” shape in which
the line goes above (below) and then below (above) the
diagonal indicates that the width of the posterior distribu-
tion is over or under estimated. After checking each of these
136 parameters individually, we find no evidence of either
of these issues.

C. Bayes factor recovery tests

In the final segment of the Bayesian tests, we check how
well our Bayes factors are recovered. Here, we use a few
different techniques of computing the Bayes factors and
compare between them. Due to computational limitations,
we reduce our dataset to a set of 14 pulsars that have
been timed for greater than 15 years. This allows us to use
nested sampling that does not converge quickly for high
dimensional spaces such as with the full 67 pulsar param-
eter space. Simulations were made with varying noise

realizations and GWB amplitudes across a broad range of
log Bayes factors,

log10BF ¼ log10ZHD − log10ZCURN; ð83Þ

from −2.5 to 17, where Z is the evidence. Bayes factors are
computed for the HD correlated model against the CURN
model. We check the hypermodel using PTMCMCSampler

against nested sampling with Ultranest, and the hypermodel
results against Bayes factors returned with reweighting
[72]. By running these methods on the same 100 realiza-
tions with each method, we show that they return consistent
answers, although at different levels of uncertainty.
In the comparison between reweighting and the hyper-

model, we take the resulting chain from the hypermodel
and reweight any of the uncorrelated model samples to the
HD correlated model. This gives us a set of weights that can
be used to compute a Bayes factor and uncertainties.
We find that the two methods give results on the log ratio
that are consistent with zero in every realization within 3σ,
as shown in the bottom panel of Fig. 4. In every case,
reweighting gives a larger uncertainty than the hypermodel
and dominates in the subtraction of Bayes factors in which
errors are propagated in quadrature.
Nested sampling requires a stopping condition in terms

of the uncertainty on the log evidence. Unfortunately, we
find that even with the reduced parameter space, setting the
stopping condition to d logZ < 0.5 led to week-long run
times. Once again, the uncertainties on the hypermodel are
overwhelmed by the uncertainties on nested sampling
without requiring more computational resources for nested
sampling, and all realizations are consistent with zero
within 3σ, as shown in the top panel of Fig. 4.
As a final test of the Bayes factors, we run the hyper-

model on a CURN model against itself on the same 100
simulations that were used above. In this case, we know
that the Bayes factor must equal 1, because a model should
not be preferred over itself. On top of checking whether we
get an answer consistent with the known value, this test
shows whether the uncertainties are being estimated prop-
erly. As shown in Fig. 5, the Bayes factor of 1 is recovered
in every realization within 3σ. This method represents an
easy check that can be performed for any situation to make
sure that the hypermodel calculation is working. However,
this test is not sufficient to claim that the method will work
for all scenarios. The case of a model against itself does
not take into account the situation where the posteriors
between two models are very different. Therefore, the test
of consistency against other samplers remains necessary.

VI. TESTS OF FREQUENTIST METHODS:
enterprise_extensions AND THE

OPTIMAL STATISTIC

In this section we present a series of tests on the
optimal statistic presented in Sec. IV. We begin by

FIG. 3. A P-P plot shows the recovery of simulated parameters
for 100 realizations simulated using the 15-year NANOGrav data
with simulated values pulled from the priors in Table I. The
model being simulated includes power law intrinsic red noise
parameters and a power law CURN. Each of the 136 parameters
are presented as an individual line on the P-P plot. A diagonal
black line indicates perfect recovery, and the 68.27%, 95.45%,
99.73% confidence intervals, found using an inverse CDF of a
binomial distribution [83], appear as curved black lines with
68.27% being the closest to the diagonal and 99.73% being
farthest away. The plot indicates no significant bias in recovery of
the posterior by PTMCMCSampler when the simulation and recov-
ery is performed via Enterprise.
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using simulated datasets to compare the “traditional”
optimal statistic and the one that accounts for covari-
ance between pulsar pair correlations. We use those
same datasets to evaluate how the revised binned
estimator performs as well. This is followed by a
discussion of the distinction between using these

statistics as estimators for the amplitude of the GWB
vs using them as detection statistics in a classical null
hypothesis testing scenario. We finish by summarizing
recent work in the literature on the MCOS and con-
structing empirical and analytic distributions for the
optimal statistic.

FIG. 4. Logarithmic ratio of the Bayes factor computed for each of 100 simulations using the hypermodel framework and nested
sampling in the top panel and the hypermodel framework and reweighting in the bottom panel. Each point indicates a mean value of the
ratio and the 1σ uncertainties are given as a vertical bar on each point. The red line indicates zero on the vertical axis, where we expect
these values to fall if the Bayes factors returned from each method are consistent. Uncertainties are dominated by the nested sampling
and reweighting methods. The values are consistent with zero within 3σ across all simulations.
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A. The optimal statistic as an estimator

In the case where A2
gw is small compared to intrinsic red

noise in all pulsars, the distribution on Â2
gw in Eq. (65) is

approximately Gaussian with a variance given by Eq. (65)
except in the tails [79]. In present analyses, A2

gw is not
smaller than the corresponding intrinsic red noise ampli-
tude for at least a few pulsars [19,20]. Therefore, to test
how well the small signal approximation works, we
perform 200 simulations with the length and cadence of
the dataset given in [47] and with red noise drawn from
pðηjδtÞ from [8]. We draw Agw from a uniform distribution,
log10Agw;inj ∈ ½−17;−13�. On each simulated dataset we
calculate Â2

gw and its variance using Eqs. (65) and (66),
and we use the method described in Appendix C to
construct P-P-like plots, replacing the posterior samples
with a Gaussian, N ðÂ2

gw; σ2gwÞ. These are not traditional
P-P plots, as there is no well-defined prior from which we
draw our simulations and sample our posterior. However,
performing the same processing as in Appendix C does test
how frequently the Gaussian distribution centered on Â2

gw

with variance σ2gw includes the simulated value of A2
gw. We

do the same thing for the estimator that includes cova-
riances between pulsar pairs, defined in Eqs. (71) and (72).
The results of this test are shown in Fig. 6, with

the “traditional” optimal statistic results shown in the
blue, solid curve and the corrected results shown in the

orange, solid curve. The blue curve is consistent with the
traditional optimal statistic underestimating the error
on the estimator by not accounting for the GWB, and
therefore not capturing the simulated value in its credible
intervals as frequently as it should. The orange curve
corrects this, as it follows the expected line more closely.
Therefore, if one is to use the optimal statistic as an
estimator for the GWB, the corrected statistic performs
significantly better.
We can perform the same test for the binned optimal

statistic in Eqs. (73) and (74) as well. For each simulation,
we evaluate the cumulative distribution function at the
simulated value, similar to the test in Appendix C, but on
each individual binned estimator in Eqs. (73) and (74). We
plot the results of the P-P-like test in Fig. 7, where we see
similar results to Fig. 6. In this case, we show deviations
from the predicted line, and so expectation is zero, as
opposed to y ¼ x. The blue curves show excess cases
where the CDF is zero and close to one, indicating
misestimation. The orange curves, which includes the
GWB in its variance, perform better, especially near zero
and one. The orange curves do reach the 3-sigma level
more than one might normally expect, and this is likely
because we have assumed that the distribution on the
binned estimators is a Gaussian. In practice, the distribution
on the estimators is a generalized chi-squared distribution,
which can be well approximated by a Gaussian under
certain circumstances [79].

FIG. 5. Bayes factors computed for a CURN model against itself for the same 100 simulations as used in the other tests of
Bayes factors. The red line in this figure indicates the true Bayes factor between the two models. All realizations recover the true value
within 3σ. This represents a quick check to see if the Bayes factor calculation using a hypermodel returns correct answers in the ideal
scenario of posteriors that are exactly the same between the two models being sampled.
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In these simulations we have used the simulated amplitude
of the background when calculating the covariance between
correlations. We do this for practical purposes—the goal of
these P-P-like tests is to show that our estimator is unbiased
and its error bars are correct when we take into account the
amplitude of the GWB. In practice, we do not have access to
the GWB amplitude a priori—we either use values drawn
from a MCMC chain (e.g., the noise-marginalized optimal
statistic), or we could employ an iterative approach, where
we calculate the GWB estimator using the optimal statistic,
and then use the estimator in the covariance matrix to
properly estimate the covariance matrix from the correla-
tions, and then repeat until convergence.

B. The optimal statistic for detection

We have shown that the estimators which include the
strength of the GWB in their construction are better than the
ones that do not, especially in the case where the amplitude
of the GWB is of a similar size to that of the intrinsic red
noise. However, the S/N calculated in Eq. (67) is calculated
under the null hypothesis. Therefore, when making a
detection, we construct a distribution for this statistic under
the null hypothesis (i.e., no correlated power), and then we
compare the same statistic calculated on the original data to

FIG. 6. P-P-like plot that characterizes how well the optimal
statistic functions as an estimator for the amplitude of the GWB.
The blue, solid curve, which uses the traditional OS does not
follow the expected diagonal line, indicating that it underesti-
mates the variance on the estimator for the background. The
orange curve, meanwhile, follows the diagonal line with its
expected error bars (shaded region) because it properly estimates
the variance by including the contribution from the GWB.

FIG. 7. P-P-like plots (with diagonal subtracted off) that
characterize how well the angular-binned optimal statistic
functions as an estimator for the amplitude of the GWB,
modulated by the Hellings-Downs correlations. We show
results estimating the amplitude in each of 11 individual bins.
Top: the blue, solid curve, uses the traditional binned OS does
not follow the expected horizontal line, indicating that it
underestimates the variance on the estimator for the back-
ground. This is especially obvious looking near zero and near
one, where we see the curves diverge from the expected range
(shaded regions) Bottom: the orange curve follows the hori-
zontal line better than the blue curves in the top because it
properly estimates the variance by including the contribution
from the GWB.
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that distribution. Therefore, Eq. (67) is the correct expression
for a detection statistic. It is common to use a noise-
marginalized version of this statistic, as discussed previously.
That is, we take the average of this S/N over many draws
from pðηjδtÞ and compare this to a null distribution.
Construction of a distribution for the null statistic takes a

few forms. The analytic distribution of this statistic was
calculated in [79] and can be used. However, pathologies
in the data that are not correctly modeled would not be
accounted for in an analytic calculation. To preserve
potential mismodeling, but still approximate the null
distribution of the detection statistic, it is common to
use sky scrambling [80] and phase shifting [81]. Sky
scrambling involves assigning random sky positions to
each pulsar, and calculating the optimal statistic, while
phase shifting applies random phases to each frequency
and each pulsar in the Fmatrix used to construct Eq. (64).
Comparisons between the analytic distribution and dis-
tributions constructed by sky scrambling and phase
shifting are still in progress. Additionally, some concerns
have been raised about whether performing sky scram-
bling and phase shifting without producing independent9

scrambles or shifts results in oversampling parts of the
null distribution, and undersampling other parts [84].
Some tests of this have been done to explore this in [19]
and found that more stringent “orthogonality” conditions
do not produce meaningfully different distributions than
those calculated with less stringent conditions. However,
more tests are in progress.

C. MCOS tests

We do not present novel tests of the MCOS here, as tests
have been presented in separate work that more completely
presents the statistic itself and characterizes its behavior
[38]. We summarize those results here, for completeness.
In [38,85] it is shown that, due to the nonisotropic

distribution of pulsars on the sky, Hellings-Downs
correlations are not orthogonal to monopolar or dipolar
correlations, as one might expect. This is what motivates
the construction of a statistic that simultaneously fits for
multiple spatial correlation patterns simultaneously. In [38],
they perform simulations of non-Hellings-Downs correla-
tion patterns, and show that it is possible using the statistic
in Eq. (67) to find a spurious detection of Hellings-Downs
correlations. Using Eqs. (77) and (80), remedies this
situation, as the new statistic correctly finds that the non-
Hellings-Downs correlations are preferred. Additionally,
the authors consider the MCOS as an estimator for the
strength of the background associated with each spatial
correlation pattern. They find that, when multiple correla-
tion patterns are simulated into the data, the MCOS
estimator for the strength of each pattern performs better

than individually estimating the strength of each process
separately. However, there are issues with the estimation of
signals and their uncertainties owing to the fact that the
MCOS is based on the traditional optimal statistic, which
does not take into account covariance between pulsar pairs
(see Sec. VI A).

VII. CONCLUSIONS

Here we have checked both Bayesian and frequentist
methods used in the 15-year GWB analysis. These methods
were outlined as they are used in the 15-year analysis. We
subjected the method implementations of each part of the
analysis to the most stringent tests of correctness performed
so far, and we find that each analysis returns unbiased,
self-consistent results.
In the Bayesian tests, we find that the priors are

recovered correctly while including parallel tempering,
AM, SCAM, DE, empirical distributions, and prior pro-
posal distributions that are used in the full analysis. This
indicates that all proposal distributions work properly and
are not biasing our results. We also find that the simulations
made with simulations pulled from a prior distribution
return diagonal P-P plots within acceptable uncertainties.
By creating realizations of the 15-year data with various
amplitudes and spectral indices of a GWB including HD
correlations in them, we perform tests using reweighting,
nested sampling, and the hypermodel to return Bayes
factors between an HD correlated and CURN model.
Each comparison between these methods return log Bayes
factor ratios consistent with zero. Finally, we perform
model comparison between a model and itself on these
same simulations and find the expected result of Gaussian
distributed Bayes factors centered around unity.
In the frequentist tests, we show through simulating

datasets that properly including the GWB when construct-
ing the optimal statistic is necessary in the situation where
the GWB is not small compared to the intrinsic red noise.
The estimator that accounts for the size of the GWB,
however, is not consistent with the null hypothesis of no
correlated power in the timing residuals, and therefore the
“traditional” optimal statistic should be used as a detection
statistic. Such a detection statistic should be calculated
on the observed timing residuals and compared to a null
distribution, which can be calculated either using the
analytic distribution [79] or a method that preserves
potential mismodeling but suppresses correlations [80,81].
Finally, we summarize the recently proposed MCOS,
which simultaneously fits for multiple spatial correlation
patterns, and helps prevent, e.g., monopolar correlations
from producing a spurious detection of Hellings-Downs
correlations and vice versa.
Currently, the NANOGrav software collection allows

one to perform inference without a steep learning curve.
As our data volume and parameter space increase with
each dataset, we look for additional methods to improve

9A statistic one could use to assess independence is presented
in [84].
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efficiency of memory management and the likelihood
evaluation speed in Enterprise. This includes possible data
compression techniques to reduce the number of points
of data required to fit to perform inference (e.g., [86]).
Additionally, reducing the autocorrelation of our chains
produced with PTMCMCSampler could reduce computation
time significantly. To this end, some recent work has used
JAX [87], a Python package that includes just-in-time
compilation to speed up evaluation of loops and autodif-
ferentiation to take derivatives quickly and accurately,
among other convenient features. With this, Freedman
et al. [88] were able to use a No-U-Turn sampler,
a Hamiltonian Monte Carlo sampling technique, which
reduced autocorrelation significantly compared to
PTMCMCSampler. In Bécsy et al. [89], just-in-time compila-
tion is used through the NUMBA Python package alongside
techniques to sample some parameters more often than
others to vastly increase the speed of evaluation of
continuous GW searches. While these papers have shown
the incredible speed gains that one may achieve via these
new technologies, they cannot be easily implemented in the
current paradigm used by Enterprise. This is primarily due to
subclassing of NumPy arrays used in Enterprise, which is not
supported by these other programs.
Both the Bayesian and frequentist methods and their

software representations pass all the tests they were
subjected to. As PTA datasets increase in sensitivity, testing
that our methods are reliable proves paramount. Here, we
validate the results of current and future analyses that use
the methods examined. Through rigorous testing of our
software and methods, we form a foundation on which
astrophysical results may stand.
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APPENDIX A: STRUCTURE OF Enterprise

The Enhanced Numerical Toolbox Enabling a Robust
PulsaR Inference SuitE (Enterprise) [41] is a Python package
built to analyze pulsar noise and timing models, and to
search for GWs in PTA data. It grew out of previous PTA
data analysis packages such as NX01 [90], PAL2 [91], and
PICCARD [92]. In the context of this paper, we are using
Enterprise to search for an isotropic GWB in simulations of
the NANOGrav 15-year dataset. Development of Enterprise

began in the interest of making a suite of tools that could
analyze data from any PTA consortium, and support
international collaboration without requiring significant
knowledge of programming.

Enterprise is a thoroughly object-oriented package that
defines a PTA data model as a hierarchical structure
(see Fig. 8). The top-level object is PTA, which interfaces
with the sampler by way of the get_lnlikelihood
and get_lnprior methods: these evaluate the (log)
Gaussian-process-marginalized likelihood of Eq. (24)
and the total prior respectively, taking as input a Python

dictionary of parameter values, or alternatively a NumPy

vector with the parameters in the same order as in the
property PTA.params.

The PTA object is created from a sequence of
SignalCollection objects, each of which corre-
sponds to a pulsar in the array, and represents the pulsar’s
complete data model. SignalCollection implements
a set of methods that return the vector and matrix
constituents used by PTA.get_lnlikelihood: for
instance, get_residuals for the residuals δt, get_
delay for any deterministic delays, get_ndiag for the
white-noise matrix N, get_basis and get_phi for
Gaussian-process bases T and prior matrix B. All these
methods take a Python dictionary of parameter values.
Each SignalCollection object consists of one

Pulsar object and any number of Signal objects.
Pulsar uses the PINT or LIBSTEMPO packages to read
pulsar data from par and tim files, standard formats
for storing timing model parameters and timing data (see,
e.g., [93]), and it provides the vectors residuals (for δt),
toaerrs (for σ), and freqs (for the pulse radio
frequencies), as well as the timing-model design matrix
Mmat (i.e., M), and several more pulsar properties. The
Signal objects, which come in a variety of subtypes,
implement deterministic signals and noise components, and
provide the building blocks that SignalCollection
and (downstream) PTA assemble into a full likelihood.
Specifically, deterministic signals define get_delay,
white-noise components define get_ndiag, and
Gaussian processes define get_basis and get_phi.
Common Gaussian processes, used most notably for the
HD-correlated background, have parallel bases for each
pulsar (with the same nGP but different nobs), provide a
get_phicross method in addition to get_phi to fill

FIG. 8. The hierarchical structure of Enterprise.
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off-diagonal prior-matrix elements and are meant to be used
with common hyperparameters.
The package includes a number of optimizations for

speed, memory, and ease of configuration:
(1) All objects keep track of which parameters affect the

output of their methods, and cache results if those
parameters are not changed, or are set as constants.
This is useful, for instance, in analyses that freeze
the white-noise parameters, or in stochastic schemes
that update parameters in blocks. The Signal-
Collection and PTA objects have methods for
intermediate matrix combinations such as TTN−1T,
and these are also cached on the basis of the relevant
parameters.

(2) The SignalCollection object combines delays
from all deterministic signals into a single vector,
assembles white-noise matrices into a single matrix,
and stacks Gaussian-process bases and priors into
two combined matrices. The object has the ability
of reusing basis vectors that appear identically in
multiple processes, such as Fourier vectors for red
noise and the GWB.

(3) The get_ndiag methods return custom “kernel”
objects that represent the constituents of the meas-
urement-noise matrix N. Whether the kernels are
represented internally as a vector for EFAC/EQUAD
noise, a Sherman-Morrison decomposition for
ECORR [see Eq. (28)], or a sparse matrix for even
more general cases, they all provide “solve”methods
that return combinations such as TTN−1y and
TTN−1T without actually computing and storing
N−1. Furthermore, the kernel objects know how to
combine themselves with other kernel objects,
creating an optimized object used in the likelihood
calculation.

(4) The PTA object defines an optimized get_phiinv
method that can choose between multiple inversion
strategies to build the global B−1 depending on the
structure of B.

Enterprise is configured by building a Signal
Collection template from a sequence of Signal
templates. Enterprise includes “factories” that build
templates for commonly used noise components such as
MeasurementNoise (for radiometer noise), Ecorr-
KernelNoise (for jitter-like noise), TimingModel (for
the Gaussian process with improper prior used to margin-
alize over timing-model corrections), FourierBasisGP
(for Gaussian processes with a sine/cosine Fourier basis),
and FourierBasisCommonGP (for Fourier Gaussian
processes with correlations across pulsars), and more. Each
template must be assigned one or more Parameter
objects that encode the priors chosen for the relevant
parameters. For instance, MeasurementNoise may
be passed efac = Normal(1, 0.25) and log10_

t2equad = Uniform(-8.5, -5) to indicate that
in Eq. (6) F ∼N ð1; 0.25Þ and log10Q ∼Uð−8;−5Þ.
Parameters may also be passed as Constant if they will
not be sampled stochastically.
The SignalCollection template is then applied

to each Pulsar object in turn, generating instantiated
SignalCollection and Signal objects, in which
parameters are specialized to the pulsar (e.g., efac
becomes B1855+09_efac) and the Pulsar quantities
are made available locally. For most Signals, a further
kind of specialization is possible in which a selection
function is passed to the Signal, effectively splitting it
into multiple copies, each applied with different parameters
to a different section of the data. For instance, the selection
by_backend, when given to MeasurementNoise,
would split EFAC parameters for the NANOGrav B1855
+09 pulsar into B1855+09_430_ASP_efac, B1855+
09_430_PUPPI_efac, B1855+09_L-wide_ASP_
efac, B1855+09_L-wide_PUPPI_efac, each
applied to the subset of the residuals obtained with that
receiver backend.
Configuration is completed by collecting the set of

instantiated SignalCollection into a single PTA
object. See the NANOGrav 12.5-yr and 15-yr tutorials
for examples of creating a standard PTA object that is ready
to compute log likelihoods and priors.

Enterprise includes a number of additional facilities
and utilities that simplify the task of creating a model.
For instance, the prior for a Fourier Gaussian processes can
be written simply as Python functions that take a vector of
frequencies and return the diagonal components of ϕ. By
wrapping the prior in parameter.function, the argu-
ments of the Python function are automatically book kept as
model parameters and specialized to pulsar and selections.
Furthermore, if the Python function includes arguments that
are defined in the Pulsar object (such as residuals or
toaerrs), these are passed to the function automatically
once the Signal that uses the function has been specified.
Of course, Enterprise already defines a number of com-

monly used Gaussian-process priors and ORFs. It also
implements the deterministic model of solar-system-
ephemeris uncertainties [37] used for older NANOGrav
data releases (utils.FourierBasisCommonGP_
physicalephem); it can draw random values of model
parameters according to their prior (parameter
.sample); it can sample the conditional distributions of
Gaussian-process weights given their hyperparameters
(utils.ConditionalGP); it can simulate full realiza-
tions of the data model (simulate); it can handle the
faster likelihood of Sec. II B with a special noise kernel
MarginalizingTimingModel that holds the compo-
nents of D internally and performs the Woodbury inversion
of Eq. (34) transparently. See the Enterprise documentation
for this and much more.
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APPENDIX B: ASYNCHRONOUS PARALLEL
TEMPERING AND THE HYPERMODEL

FRAMEWORK

PTMCMCSampler previously used an asynchronous paral-
lelization model for parallel tempering in which each chain
sampled a set number of steps on its own unless interrupted
by another chain asking to propose a swap between chains.
During our tests, we noticed that this asynchronous

parallel-tempered MCMC biased Bayes factors computed
with hypermodel in favor of the model that took the longest
evaluation time per iteration. As a simple example of this
issue, we simulate data with a sinusoidal signal hðtÞ and
noise nðtÞ,

dðtÞ ¼ hðtÞ þ nðtÞ: ðB1Þ

The sinusoid signal is described by amplitude, angular
frequency, and phase,

hiðt; A;ω;ϕÞ ¼ A sinðωti þ ϕÞ; ðB2Þ

and the noise nðtÞ ∼N ð0; 1Þ. The log likelihood we use for
this signal model is

pðdjA;ω;ϕÞ ∝ −
1

2

X
i

ðdiðtÞ − hiðt; A;ω;ϕÞÞ2: ðB3Þ

Priors are all chosen to be uniform with

A ∼ Uniform½0; 5�; ðB4Þ

ω ∼ Uniform½0; 3�; ðB5Þ

ϕ ∼ Uniform½0; π�: ðB6Þ

Priors remain the same across each model used, and
parameter estimation of the simulated values returns con-
sistently with the posteriors.

FIG. 9. The Bayes factor for a model over itself should be one,
which is shown as a dashed, black line on this plot. Instead, we find
that the Bayes factor is inconsistent with a value of one. Parallel
tempering swaps are proposed every 100 samples, labeled “Tskip”
in this plot (as it is in PTMCMCSampler). Thinning increases the
contamination from swaps by increasing the number of samples
that come from swaps out of the total number. Uncertainties on the
Bayes factors were computed via bootstrapping.

FIG. 10. Two chains, one at T1 ¼ 1 and the other at T1 ¼ 2, progress through iterations. Iterations start at the white circles and last
until the next circle. Two models are being considered, one of which takes 10 times longer to evaluate. After each iteration, the hot chain,
shown in red on top, runs a nonblocking probe to check if anything has been sent from the cold chain, shown in black on bottom. Once
the cold chain reaches 100 samples, a blocking send pushes data required for a swap to the hot chain. These data get accepted by the hot
chain after the current iteration finishes and a swap is proposed. Because of this disparity in evaluation times, we find that the hot chain is
10 times more likely to be in the model that takes longer to evaluate. This results in a bias in the model that goes into the swap proposals.
Fundamentally, this means that the swaps proposed are more likely to happen in certain parts of the hypermodel parameter space,
breaking detailed balance.
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The hypermodel framework consists of multiple models
concatenated with a continuous “switch” parameter
between them. This framework chooses models based on
which of two bins the switch parameter falls into. In this
case, the first model is the sinusoidal model as described
above, and the second model is the same model, but with a
time.sleep() call to increase the evaluation time by a
factor of a few.
Upon computing the odds ratios with the asynchronously

updated sampler, we find that the odds ratio is not
consistent with the anticipated value of one, as seen in
Fig. 9. Parallel tempering swap proposals occur every 100
samples. Thinning by multiples of 10 cause the samples to
become increasingly contaminated with swaps that pull the
odds ratio away from one.
Syncing the model evaluation times gives odds ratios

consistent with one, contrary to what we see in Fig. 9.
Therefore, the problem appears to be caused by the
evaluation time of one of the models being much longer
than the other. The exact timeline of when these swaps are
proposed is shown in Fig. 10 and proves critical to figuring
out what went wrong.
In asynchronous parallel tempering, swaps are proposed

whenever a chain gets to a set number of samples. The
chain sends data to the next chain up in the temperature
ladder, halting the chain until the other chain is done with
its current sample evaluation. While waiting for this signal,
the hotter chain continues collecting samples, probing the
lower chain for data after each sample. Once the signal has
been received, the chains swap with their most recent
sample iteration.
Upon proposing a swap, the cold chain finds the hot

chain in the model that has the longer evaluation time more
often than not. This means that the swaps are proposed
with a dependence on where in the switch parameter space
we are, violating detailed balance for parallel tempering
swap proposals.
One option to fix this involves synchronizing the swap

proposals so that all chains propose swaps at the same
iterations. The other option is to weight the proposals
with weights proportional to the ratio of the evaluation
times. In some situations this option is not possible
due to dependence of evaluation time on where we are
in the parameter space. We opted to synchronize the
sampler for simplicity and to keep the sampler as generic
as possible.

APPENDIX C: UNDERSTANDING CONFIDENCE
INTERVALS OF P-P PLOTS

In Fig. 3, the confidence intervals are found as in Ashton
and Talbot [83]. Unlike in the Q-Q plots where we have
tens of thousands of samples, the standard bootstrap
approximated confidence intervals (which estimates the
confidence intervals as Gaussian) overshoot the exact
bounds near p values of 0 and 1. For a given realization

of the data, we have a simulated value for a single
parameter θinj, and we can compute a CDF of this value,

FðθinjÞ ¼
Z

θinj

−∞
pðxjδtÞdx: ðC1Þ

If we take many new realizations, their associated CDFs
should be uniformly distributed between 0 and 1. Picking a
particular p value on the horizontal axis will split the
uniform distribution into two segments. Let us define a
success as FðθinjÞ ≤ s and a failure as FðθinjÞ > s, where s
is the chosen horizontal axis value. From N draws, the
probability of k successes can be found with a binomial
distribution,

pðk successesÞ ¼
�
N

k

�
skð1 − sÞN−k: ðC2Þ

We would like to have coverage ð1 − αÞ=2 on both sides of
the mean of the distribution with

α ¼ ð0.6827; 0.9545; 0.9973Þ ðC3Þ

for the three bounds that we show. Using the quantile
function for the binomial distribution, F−1ðsÞ (binom.ppf
in scipy.stats) on each of the horizontal axis values, the
offset from the mean is

σ ¼ F−1ðsÞ=N: ðC4Þ

APPENDIX D: BATCH UPDATES OF THE
SAMPLE MEAN AND COVARIANCE

Let x0 be an N × nparam matrix of samples from the
history of an MCMC chain and let x1 be the next M
samples of the nparam parameters. Finally, let x be the
concatenation of x0 and x1 with total length N þM. The
mean for x along the N þM axis can be computed as

x̄j ¼ x̄j0 þ
1

M þ N

XN
i¼1

ðxij1 − x̄j0Þ; ðD1Þ

where an over bar denotes an average. Next, we can
compute the sample covariance through a batch update as

Σ ¼ ðN − 1ÞΣ0 þ Σ1

N þM − 1
; ðD2Þ

where

Σij
1 ¼ ðxji1 − x̄jÞðxij1 − x̄j0Þ: ðD3Þ

In PTMCMCSampler, these methods use M ¼ 1 and iterate
over the whole chain.
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