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ABSTRACT

We investigate the pulsar birthrate from a sample of 815 nonrecycled pulsars detected by the Parkes multibeam
survey, accounting as accurately as possible for all known selection effects. We find that pulsars with magnetic
fields greater than G account for more than half of the total birthrate in spite of comprising only122.5# 10
about 5%–10% of the total Galactic population. While we do not find evidence for a significant population of
pulsars “injected” into the population with spin periods of∼0.5 s, we do find that many, perhaps 40%, are born
with periods in the range 0.1–0.5 s. The absolute number and birthrate of Galactic pulsars is strongly dependent
on the assumed models for pulsar beaming and Galactic electron distribution. Adopting the most recent models,
we find the total pulsar birthrate to be between 0.9 and 1.9 pulsars per century for 1400 MHz luminosities greater
than 1 mJy kpc2, and the total Galactic population of active radio pulsars above this luminosity limit to be
between 70,000 and 120,000.

Subject headings: pulsars: general — stars: evolution

1. INTRODUCTION

The birth, life history, and death of radio pulsars have been
topics of great interest and debate since the discovery of pulsars
37 years ago (Hewish et al. 1968). In a pioneering statistical
study based on a sample of 41 pulsars, Gunn & Ostriker (1970)
derived a birthrate of approximately one pulsar every 30 yr in
the Galaxy. In a more model-free approach, Vivekanand &
Narayan (1981) developed the current pulsar analysis proposed
by Phinney & Blandford (1981). Using a sample of 210 pulsars,
they derived a Galactic population of∼ active pulsars56 # 10
with a birthrate of one pulsar every 21 yr. Somewhat contro-
versially, they found a significant increase in the current at a
period s, which led to the conclusion that a large num-P ∼ 0.5
ber of pulsars must be injected into the population with initial
spin periods s.P � 0.50

Subsequent population studies based on larger sample sizes
have produced conflicting results. Applying Gunn & Ostriker’s
approach to a sample of 316 pulsars, Lyne et al. (1985) found
the number of active pulsars in the Galaxy to be , with52 # 10
a corresponding birthrate of one pulsar every 30–120 yr. Their
analysis was consistent with a simple model in which all pulsars
are born spinning rapidly at birth ( s). In a later study,P ! 0.10

Narayan (1987) repeated the current pulsar analysis with 220
pulsars and concluded that injection was significant for pulsars
with high magnetic fields (�1012 G). He derived the total num-
ber of active pulsars in the Galaxy to be∼ , with one51.5# 10
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pulsar born every∼56 yr. A later application of the pulsar
current analysis by Lorimer et al. (1993) using a sample of
412 pulsars found no evidence for injection for the population
with 430 MHz luminosities above 10 mJy kpc2. They concluded
that the birthrate above this luminosity limit is one pulsar in
125–250 yr, with a total Galactic population of∼ .47 # 10

The pulsar samples used in the above studies were almost
exclusively derived from surveys conducted at low frequencies,
usually near 400 MHz, which were largely insensitive to the
distant short-period pulsars in the Galactic plane due to prop-
agation effects. Successful pulsar surveys require a large radio
telescope, low-noise receivers, a relatively wide bandwidth, and
long observation times. The Parkes multibeam survey (Man-
chester et al. 2001) met all these requirements and is the most
successful pulsar survey so far, with over 700 pulsars discov-
ered. Many of these pulsars are young and relatively distant,
including several with strong implied surface dipole magnetic
fields (e.g., McLaughlin et al. 2003). Of the 75 radio pulsars
currently known with characteristic ages9 kyr, 43 weret � 100c

discovered in this survey. Therefore we have an excellent basis
for investigating the birthrate of pulsars.

While it is obvious that pulsars with large slowdown rates,
, and hence large implied surface dipole magnetic fieldṖ

strengths contribute disproportionally to the overall birthrate,
there has been little quantitative analysis of the dependence of
birthrate on magnetic field strength. In this Letter we apply the
pulsar current analysis to the Parkes multibeam sample, ac-
counting as accurately as possible for all known selection ef-
fects. Following a brief description of the properties of the
observed sample used in this study (§ 2), in § 3 wesummarize
the main computational methods and assumptions used in our
analysis. We discuss the main results of this study in § 4.

2. THE OBSERVED SAMPLE

The Parkes multibeam survey was carried out using the 13
beam multibeam receiver on the Parkes 64 m radio telescope.
The central radio frequency of the survey is 1374 MHz, and

9 The characteristic age, , is defined as , where is the first time˙ ˙t P/(2P) Pc

derivative ofP.
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its limiting sensitivity is∼0.2 mJy. Details of the observing
system are given by Manchester et al. (2001). This paper and
three other major multibeam survey papers (Morris et al. 2002;
Kramer et al. 2003; Hobbs et al. 2004) report the discovery of
600 pulsars and the detection of a further 281 previously known
pulsars, giving a total of 881 pulsars. These papers give the
pulsar period, period derivative, dispersion measure, pulse
width, and mean flux density at 1400 MHz, all of which are
required for this study. Of the 881 pulsars, 42 lie outside the
nominal survey area ( , and ) and 13FbF ! 5�, l 1 260� l ! 50�
have no published period derivative, leaving 826 pulsars. Of
these, 11 have ms and and are apparently�18˙P ! 100 P ! 10
recycled. Although they make a negligible contribution to the
pulsar current, they are not relevant to the present study. Re-
moving these leaves a total sample of pulsars withN p 815psr

minimum, median, mean, and maximum periods of 36 ms and
0.55, 0.76, and 6.71 s, respectively.

3. COMPUTATIONAL METHODS

3.1. Scale Factor

The pulsar current method depends on estimating the number
of pulsars in the Galaxy that are similar to each of the pulsars
in the sample. We have used the sensitivity threshold of the
multibeam survey computed by Crawford (2000; see also Man-
chester et al. 2001) and compute a weight or scale factor for
each pulsar by (1) placing it at a large number of randomly
selected locations in the model Galaxy; (2) for each position,
calculating the effective dispersion measure and the interstellar
scattering and the corresponding survey limiting flux density;
and (3) recording the number of detections, i.e., those positions
for which the predicted flux density exceeds the survey limit.
The scale factor for each pulsar ( ) is then defined to be theSi

ratio of the total number of pulsars in our model Galaxy (typ-
ically ) to the number of model pulsars that would be de-510
tected by the survey.

Because of the paucity of observed pulsars toward the Ga-
lactic center, the radial distribution of neutron stars is not well
understood. Following Narayan (1987), it is often assumed that
pulsars have a Gaussian radial distribution about the Galactic
center. Johnston (1994) derived an improved model of the radial
distribution that has a deficit of pulsars in the inner Galaxy.
These two models give very similar results in the present anal-
ysis, but since preliminary analysis of the Parkes multibeam
sample (Lorimer 2004) gives some support to Johnston’s
model, we adopt it for this Letter. For the distribution of pulsars
with respect to the Galactic plane, we choose a Gaussian dis-
tribution in z with scale height of pc (from Lyne etz p 4500

al. 1998).
We use two models for the Galactic free-electron distribu-

tion—the TC93 model (Taylor & Cordes 1993) and the NE2001
model (Cordes & Lazio 2002)—to estimate distances for real
pulsars and dispersion and scattering measures for model pul-
sars. We obtain the sky background temperature from the all-
sky survey at 408 MHz of Haslam et al. (1982) and scale to
our observing frequency using a�2.8 power-law frequency
dependence (Lawson et al. 1987).

3.2. Current Pulsar Analysis

The idea of the current pulsar analysis is to compute the
flow of pulsars from short to long periods. We assume that the
distribution of pulsars in the Galaxy is in a steady state. Hence,

the pulsar current in a period binP of width can be writtenDP
as follows:

npsr ˙1 S Pi iJ(P) p . (1)�( )
DP fip1 i

Here is the number of known pulsars in the period bin andnpsr

is the beaming fraction of theith pulsar in that bin. Sincefi

(the intrinsic) for all pulsars, is equal to the totalṖ 1 0 J(P)
birthrate of pulsars in the period range 0 toP, minus the death
rate in the same range (Vivekanand & Narayan 1981). There-
fore, is less than or equal to the total birthrate.J(P)

In a few cases, as noted previously by Lorimer et al. (1993),
the computed pulsar current is dominated by a single pulsar
and hence has large statistical uncertainty, resulting in a pos-
sible overestimation of the actual birthrate. Lorimer et al. re-
moved such pulsars by placing a luminosity cutoff. We min-
imize the effects of such pulsars by a simple outlier removal
method. If the computed current for a pulsar lies more than
2 j outside of the mean, we removed it from the sample.

Given a sample of pulsars, the number of potentiallyNpsr

observable pulsars in the Galaxy is the sum of all their scale
factors, with a statistical error

N 1/2psr

2j p S . (2)�( )N i
ip1

Note that these number and birthrate estimates do not account
for the population of pulsars with radio luminosities below the
minimum value of the observed sample. For this reason, when
quoting our results in § 4, we always list the corresponding
luminosity limit for the sample under consideration. This and
the removal of pulsars with anomalously high currents both
reinforce the interpretation of birth rates and Galactic popu-
lations as lower limits on the true values.

3.3. Beaming Fraction

Since the radio emission from pulsars is beamed, some frac-
tion of the “active” pulsars are unobservable because their emis-
sion is not directed toward the Earth. The fractionf of the sky
in which the emission is beamed is generally believed to be a
function of period. In this work, we take the beaming model
of Tauris & Manchester (1998), who find a beaming fraction/
pulse period relation of the form

2f (P) p 0.09[log (P/s)� 1] � 0.03. (3)

Since there is much debate as to the exact shape and evolution
of the beam and the distribution of beam parameters, we quote
results with and without the application of a beaming correc-
tion. This is advantageous since the uncorrected results (i.e.,

) represent the potentially observable pulsar population.f p 1i

4. RESULTS AND DISCUSSION

In addition to applying the current pulsar analysis to the
entire pulsar sample, we also quote results for three roughly
equal size subsets ranked according to the inferred surface
dipole magnetic field strength G. That19 1/2˙B p 3.2# 10 (PP)s

allows us to explore how the population and birthrate differ as
a function of . The low-field set contains 275 pulsars withBs

minimum, maximum, and mean in of 10.14, 11.96,log (B /G)s

and 11.57, respectively, and mean . TheAlog (t /yr)S p 7.27c
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Fig. 1.—Pulsar current distributions using the Taylor & Cordes (1993) elec-
tron density model (left) and the Cordes & Lazio (2002) model (right).
(a, b) Distribution for low-field pulsars; (c, d ) distribution for middle-field
pulsars; and (e, f ) distribution for high-field pulsars.

TABLE 1
Pulsar Birthrates and Galactic Populations

Subsample

TC93 NE2001

Birthratea Number in Galaxy Birthratea Number in Galaxy

Total:
L 1 0.35 mJy kpc2

(782 pulsars)
L 1 0.19 mJy kpc2

(777 pulsars)
f p 1 . . . . . . . . . 0.24� 0.04 21900� 5200 0.39� 0.08 50800� 13500
f p f(P) . . . . . . 1.13� 0.21 139000� 33300 1.86� 0.37 316400� 83100

High Bs: (224 pulsars) (224 pulsars)
f p 1 . . . . . . . . . 0.13� 0.03 1300� 200 0.19� 0.06 2200� 400
f p f(P) . . . . . . 0.60� 0.16 11600� 1600 0.93� 0.28 21100� 5100

Middle Bs: (285 pulsars) (283 pulsars)
f p 1 . . . . . . . . . 0.08� 0.02 4200� 800 0.11� 0.03 6300� 1300
f p f(P) . . . . . . 0.37� 0.12 34100� 7700 0.53� 0.16 49500� 11700

Low Bs: (273 pulsars) (270 pulsars)
f p 1 . . . . . . . . . 0.03� 0.01 16400� 5100 0.09� 0.04 42300� 13500
f p f(P) . . . . . . 0.15� 0.07 93300� 32300 0.40� 0.18 245800� 82100

L 1 1 mJy kpc2: (777 pulsars) (765 pulsars)
f p 1 . . . . . . . . . 0.23� 0.04 11900� 1400 0.33� 0.07 15700� 1600
f p f(P) . . . . . . 1.12� 0.20 79100� 9800 1.58� 0.33 106600� 11700

L 1 10 mJy kpc2: (610 pulsars) (539 pulsars)
f p 1 . . . . . . . . . 0.09� 0.02 1800� 100 0.08� 0.02 1800� 100
f p f(P) . . . . . . 0.38� 0.08 11700� 700 0.37� 0.08 11700� 700
a In units of pulsars per century.

middle-field set contains 292 pulsars with log (B /G) ps min

, , and and11.97 log (B /G) p 12.40 Alog (B /G)S p 12.19s max s

mean . Finally, the high-field set containsAlog (t /yr)S p 6.30c

248 pulsars with ,log (B /G) p 12.41 log (B /G) ps min s max

, , and .13.97 Alog (B /G)S p 12.70 Alog (t /yr)S p 5.58s c

The results are summarized in Figure 1 and Table 1. The figure
shows the derived pulsar currents for the two electron density
models and for the different ranges of magnetic field strength.
The table gives estimates of the birthrate (maximum current) for
the total sample and each range of magnetic field strength with
a 1400 MHz luminosity cutoff of 0.35 and 0.19 mJy kpc2 for
the TC93 and NE2001 models, respectively, and cutoffs of 1
and 10 mJy kpc2 for the total sample (cf. Lorimer et al. 1993)
separately for the two electron density models. The numbers
in parentheses are the sample size after omitting the anomalous
current pulsars as described above.

Regardless of which electron density model is used, it is
clear that the high-field pulsars account for more than 50% of

the overall current and hence the overall birthrate. This is in
spite of the fact that these pulsars comprise less than 30% of
the observed sample and, as can be inferred from Table 1, less
than 10% of the total Galactic population.

For the mid- and high-magnetic field ranges, the current in
the first period bin ( s) is systematically lower0 s! P ! 0.2
than that in the second bin ( s), indicating that0.2 s! P ! 0.4
many pulsars are born spinning with periods in the 0.2–0.4 s
range. This result is similar to that discussed by Narayan
(1987), but our improved statistics show that the period range
with the highest net birthrate of high- pulsars is below ratherBs

than above 0.5 s. It remains true that there is good evidence
against high-field pulsars being born with periods�100 ms.

At longer periods, the current distributions for the low mag-
netic field range are consistent with a plateau (suggesting that
no further pulsars are being born at higher periods) or a steady
decline (suggesting that pulsars are beginning to die). For the
high- pulsars, the current remains high to periods in excessBs

of 1 s. This implies either that high- pulsars do not die untilBs

their periods are greater than 1 s, or, if some of these pulsars
die when their period is�0.4 s, that this death rate is matched
by further births in the period range 0.4–1 s.

Birthrates for a sample cutoff mJy kpc2 are approx-L 1 11400

imately 3 times those for mJy kpc2. Lorimer et al. (1993)L 1 101400

suggested that few pulsars are born with mJy kpc2, butL ! 41400

recent detections of low-luminosity young pulsars (e.g., Camilo
et al. 2002) suggest that this may not be correct. Our results support
the idea that many pulsars are born with low luminosities.

Table 1 also gives the estimated total number of potentially
observable and active pulsars in the Galaxy for each electron
density model. Since many pulsars are less distant in the
NE2001 model, the implied scale factors and hence total Ga-
lactic population are greater than for the TC93 model. For the
NE2001 model and a luminosity cutoff mJy kpc2,L 1 11400

there are∼16,000 potentially detectable pulsars and∼110,000
active pulsars in the Galaxy.

According to Table 1, the total birthrates for mJy kpc2L 1 11400

correspond to birth intervals of 76–109 and 52–80 yr for the
TC93 and NE2001 models, respectively. These results are in
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good agreement with recent estimates of the supernova rate in
our Galaxy of one in 63–119 yr (Cappellaro et al. 1999).
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